Non-Colliding Random Walks, Tandem Queues, and DiscreteOrthogonal Polynomial Ensembles

We show that the function $h(x)=\prod_{i < j}(x_j-x_i)$ is harmonic for any random walk in $R^k$ with exchangeable increments, provided the required moments exist. For the subclass of random walks which can only exit the Weyl chamber $W=\{x\colon x_1 < x_2 < \cdots < x_k\}$ onto a point where $h$ vanishes, we define the corresponding Doob $h$-transform. For certain special cases, we show that the marginal distribution of the conditioned process at a fixed time is given by a familiar discrete orthogonal polynomial ensemble. These include the Krawtchouk and Charlier ensembles, where the underlying walks are binomial and Poisson, respectively. We refer to the corresponding conditioned processes in these cases as the Krawtchouk and Charlier processes. In [O'Connell and Yor (2001b)], a representation was obtained for the Charlier process by considering a sequence of $M/M/1$ queues in tandem. We present the analogue of this representation theorem for the Krawtchouk process, by considering a sequence of discrete-time $M/M/1$ queues in tandem. We also present related results for random walks on the circle, and relate a system of non-colliding walks in this case to the discrete analogue of the circular unitary ensemble (CUE).

[1]  Craig A. Tracy,et al.  Mathematical Physics © Springer-Verlag 1994 Fredholm Determinants, Differential Equations and Matrix Models , 2022 .

[2]  K. Johansson Shape Fluctuations and Random Matrices , 1999, math/9903134.

[3]  Jim Pitman ONE-DIMENSIONAL BROWNIAN MOTION AND THE THREE-DIMENSIONAL BESSEL PROCESS , 1974 .

[4]  yuliy baryshnikov GUEs and queues , 1999 .

[5]  Anthony Unwin,et al.  Reversibility and Stochastic Networks , 1980 .

[6]  J. Doob Classical potential theory and its probabilistic counterpart , 1984 .

[7]  David J. Grabiner Brownian Motion in a Weyl Chamber, Non-Colliding Particles, and Random Matrices , 1997, math/9708207.

[8]  P. Robert Réseaux et files d'attente : méthodes probabilistes , 2000 .

[9]  P. Glynn,et al.  Departures from Many Queues in Series , 1991 .

[10]  P. Burke The Output of a Queuing System , 1956 .

[11]  K. Johansson Discrete orthogonal polynomial ensembles and the Plancherel measure. , 1999, math/9906120.

[12]  K. Meyer The Output of a Queueing System , 1981 .

[13]  P. Bougerol,et al.  Paths in Weyl chambers and random matrices , 2002 .

[14]  Upendra Dave,et al.  Applied Probability and Queues , 1987 .

[15]  E. Reich Waiting Times When Queues are in Tandem , 1957 .

[16]  Random vicious walks and random matrices , 2000, math/0001022.

[17]  John Odentrantz,et al.  Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.

[18]  A. Shiryayev On Sums of Independent Random Variables , 1992 .

[19]  F. Dyson A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .

[20]  J. Baik,et al.  On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.

[21]  Janko Gravner,et al.  Limit Theorems for Height Fluctuations in a Class of Discrete Space and Time Growth Models , 2000 .

[22]  Wendelin Werner,et al.  Non-Colliding Brownian Motions on the Circle , 1996 .

[23]  P. Brémaud Point processes and queues, martingale dynamics , 1983 .

[24]  P. Biane Quelques proprietes du mouvement Brownien dans un cone , 1994 .

[25]  R. Pinsky ON THE CONVERGENCE OF DIFFUSION PROCESSES CONDITIONED TO REMAIN IN A BOUNDED REGION FOR LARGE TIME TO LIMITING POSITIVE RECURRENT DIFFUSION PROCESSES , 1985 .

[26]  K. Johansson Non-intersecting paths, random tilings and random matrices , 2000, math/0011250.

[27]  Marc Yor,et al.  A Representation for Non-Colliding Random Walks , 2002 .

[28]  L. Rogers,et al.  Diffusions, Markov processes, and martingales , 1979 .

[29]  Marc Yor,et al.  Brownian analogues of Burke's theorem , 2001 .

[30]  Neil O'Connell,et al.  Eigenvalues of the Laguerre Process as Non-Colliding Squared Bessel Processes , 2001 .

[31]  J. M. Harrison,et al.  On the Quasireversibility of a Multiclass Brownian Service Station , 1990 .