Generalized Gray map and a class of p-ary nonlinear codes

In this paper, we investigate a generalized Gray map G on Z p k with p a prime, which generalizes a Carlet's result in 1. For a Z p k -valued function f ( x ) , we use exponential sums to express the Hamming weight of G ( f ( x ) ) . As an application, a family of nonlinear codes over F p is obtained from the generalized Gray map. We use the Weil-type exponential sums over Galois rings to provide a lower bound for the minimum distance of these codes.

[1]  Claude Carlet Z2k-Linear Codes , 1998, IEEE Trans. Inf. Theory.

[2]  P Shankar On BCH codes over arbitrary integer rings , 1979 .

[3]  N. J. A. Sloane,et al.  Modular andp-adic cyclic codes , 1995, Des. Codes Cryptogr..

[4]  Claude Carlet On Z4-duality , 1995, IEEE Trans. Inf. Theory.

[5]  T. Honold,et al.  Weighted modules and representations of codes , 1998 .

[6]  Tor Helleseth,et al.  Several Classes of Codes and Sequences Derived From a $\BBZ_{4}$-Valued Quadratic Form , 2011, IEEE Transactions on Information Theory.

[7]  Marcus Greferath,et al.  Gray isometries for finite chain rings and a nonlinear ternary (36, 312, 15) code , 1999, IEEE Trans. Inf. Theory.

[8]  San Ling,et al.  Improved p-ary Codes and Sequence Families from Galois Rings of Characteristic p2 , 2005, SIAM J. Discret. Math..

[9]  A. Nechaev,et al.  Linear recurring sequences over Galois rings , 1995 .

[10]  CarletC. Z2k-linear codes , 1998 .

[11]  A. Robert Calderbank,et al.  An upper bound for Weft exponential sums over Galois tings and applications , 1994, IEEE Trans. Inf. Theory.

[12]  S. Lang Algebraic Number Theory , 1971 .

[13]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[14]  C. Carlet One-weight Z4-linear Codes , 2000 .

[15]  Cees Witteveen,et al.  Inferring Control Structures from the Behaviour of a Production System , 1981, Inf. Control..

[16]  Priti Shankar On BCH codes over arbitrary integer tings (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[17]  Cunsheng Ding,et al.  New Classes of Balanced Quaternary and Almost Balanced Binary Sequences With Optimal Autocorrelation Value , 2010, IEEE Transactions on Information Theory.

[18]  Tor Helleseth,et al.  Improved binary codes and sequence families from Z4-linear codes , 1996, IEEE Trans. Inf. Theory.

[19]  Tor Helleseth,et al.  Two New Families of Optimal Binary Sequences Obtained From Quaternary Sequences , 2009, IEEE Transactions on Information Theory.

[20]  Tor Helleseth,et al.  Improved estimates via exponential sums for the minimum distance of Z4-linear trace codes , 1996, IEEE Trans. Inf. Theory.

[21]  Claude Carlet On Cryptographic Propagation Criteria for Boolean Functions , 1999, Inf. Comput..