Analyzing two-dimensional sine–Gordon equation with the mesh-free reproducing kernel particle Ritz method

Abstract We consider an analysis of the non-linear two-dimensional sine–Gordon (SG) equation. The analysis is performed using the mesh-free reproducing kernel particle Ritz method (kp-Ritz method). The mesh-free kernel particle estimate is employed to approximate the 2D displacement field. A system of discrete equations is obtained through application of the Ritz minimization procedure to the energy expressions. To validate the accuracy of the results and stability of the present method, convergence studies were carried out based on influences of support size and number of nodes. The present results were compared with results reported in extant literature and were found to be in good agreement with the literature.

[1]  G. Wei Discrete singular convolution for beam analysis , 2001 .

[2]  Guo-Wei Wei,et al.  Discrete singular convolution for the sine-Gordon equation , 2000 .

[3]  Mehdi Dehghan,et al.  High-order solution of one-dimensional sine-Gordon equation using compact finite difference and DIRKN methods , 2010, Math. Comput. Model..

[4]  Yang Xiang,et al.  Flexural vibration of shear deformable circular and annular plates on ring supports , 1993 .

[5]  Mingrong Cui Fourth‐order compact scheme for the one‐dimensional sine‐Gordon equation , 2009 .

[6]  Zhongying Chen,et al.  Multilevel augmentation methods for solving the sine-Gordon equation , 2011 .

[7]  Alvaro L. Islas,et al.  Multi-symplectic Spectral Methods for the Sine-Gordon Equation , 2003, International Conference on Computational Science.

[8]  Dogan Kaya A numerical solution of the sine-Gordon equation using the modified decomposition method , 2003, Appl. Math. Comput..

[9]  Mehdi Dehghan,et al.  Boundary element solution of the two-dimensional sine-Gordon equation using continuous linear elements , 2009 .

[10]  Juan I. Ramos,et al.  The sine-Gordon equation in the finite line , 2001, Appl. Math. Comput..

[11]  Yang Xiang,et al.  Buckling of thick skew plates , 1993 .

[12]  Mehdi Dehghan,et al.  Implementation of meshless LBIE method to the 2D non‐linear SG problem , 2009 .

[13]  Guo-Wei Wei,et al.  Discrete singular convolution for the solution of the Fokker–Planck equation , 1999 .

[14]  F. Esposito,et al.  Theory and applications of the sine-gordon equation , 1971 .

[15]  Ben-yu Guo,et al.  Generalized Jacobi Rational Spectral Method and Its Applications , 2010, J. Sci. Comput..

[16]  Y. K. Cheung,et al.  Three-dimensional vibration analysis of cantilevered and completely free isosceles triangular plates , 2002 .

[17]  G. Adomian A review of the decomposition method in applied mathematics , 1988 .

[18]  Mehdi Dehghan,et al.  A numerical method for one‐dimensional nonlinear Sine‐Gordon equation using collocation and radial basis functions , 2008 .

[19]  John Argyris,et al.  An engineer's guide to soliton phenomena: Application of the finite element method , 1987 .

[20]  J. Gibbon,et al.  Solitons and Nonlinear Wave Equations , 1982 .

[21]  George Adomian,et al.  Solving Frontier Problems of Physics: The Decomposition Method , 1993 .

[22]  Ding Zhou,et al.  Free vibrations of rectangular unsymmetrically laminated composite plates with internal line supports , 2001 .

[23]  Mehdi Dehghan,et al.  Meshless local Petrov-Galerkin (MLPG) approximation to the two dimensional sine-Gordon equation , 2010, J. Comput. Appl. Math..

[24]  Mehdi Dehghan,et al.  A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions , 2008, Math. Comput. Simul..

[25]  John Argyris,et al.  Finite element approximation to two-dimensional sine-Gordon solitons , 1991 .

[26]  Guo-Wei Wei,et al.  VIBRATION ANALYSIS BY DISCRETE SINGULAR CONVOLUTION , 2001 .

[27]  Mehdi Dehghan,et al.  The dual reciprocity boundary element method (DRBEM) for two-dimensional sine-Gordon equation , 2008 .

[28]  Mehdi Dehghan,et al.  The boundary integral equation approach for numerical solution of the one‐dimensional Sine‐Gordon equation , 2008 .

[29]  Mehdi Dehghan,et al.  Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM) , 2010, Comput. Phys. Commun..

[30]  Xiaowu Lu,et al.  Symplectic computation of solitary waves for general Sine-Gordon equations , 2001 .

[31]  Yang Xiang,et al.  The determination of natural frequencies of rectangular plates with mixed boundary conditions by discrete singular convolution , 2001 .

[32]  K. M. Liew,et al.  A pb-2 Ritz Formulation for Flexural Vibration of Shallow Cylindrical Shells of Rectangular Planform , 1994 .

[33]  Guo-Wei Wei,et al.  A new algorithm for solving some mechanical problems , 2001 .

[34]  Md. Sazzad Hossien Chowdhury,et al.  APPLICATION OF HOMOTOPY-PERTURBATION METHOD TO KLEIN–GORDON AND SINE-GORDON EQUATIONS , 2009 .

[35]  Yang Xiang,et al.  A non-discrete approach for analysis of plates with multiple subdomains , 2002 .

[36]  K. Liew,et al.  Formulation of Mindlin-Engesser model for stiffened plate vibration , 1995 .

[37]  K. M. Liew,et al.  Three-dimensional free vibration analysis of perforated super elliptical plates via the p-Ritz method , 2001 .

[38]  Qin Sheng,et al.  A predictor‐‐corrector scheme for the sine‐Gordon equation , 2000 .

[39]  W. Ritz Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. , 1909 .

[40]  Huan Zeng,et al.  FREE VIBRATION ANALYSIS OF DISCRETELY STIFFENED SKEW PLATES , 2001 .

[41]  Z. Fei,et al.  Two energy conserving numerical schemes for the Sine-Gordon equation , 1991 .