Geometry and Complexity Theory

Two central problems in computer science are P vs NP and the complexity of matrix multiplication. The first is also a leading candidate for the greatest unsolved problem in mathematics. The second is of enormous practical and theoretical importance. Algebraic geometry and representation theory provide fertile ground for advancing work on these problems and others in complexity. This introduction to algebraic complexity theory for graduate students and researchers in computer science and mathematics features concrete examples that demonstrate the application of geometric techniques to real world problems. Written by a noted expert in the field, it offers numerous open questions to motivate future research. Complexity theory has rejuvenated classical geometric questions and brought different areas of mathematics together in new ways. This book will show the beautiful, interesting, and important questions that have arisen as a result.

[1]  G. Ottaviani,et al.  On the Alexander–Hirschowitz theorem , 2007, math/0701409.

[2]  Leslie G. Valiant,et al.  Graph-Theoretic Arguments in Low-Level Complexity , 1977, MFCS.

[3]  Saugata Basu,et al.  A Complexity Theory of Constructible Functions and Sheaves , 2013, Found. Comput. Math..

[4]  K. Ramachandra,et al.  Vermeidung von Divisionen. , 1973 .

[5]  Ueber ein Flächennetz zweiter Ordnung , 1877 .

[6]  K. Ranestad,et al.  Varieties of sums of powers , 1998, math/9801110.

[7]  Noga Alon,et al.  Colorings and orientations of graphs , 1992, Comb..

[8]  Jerzy Weyman Gordan Ideals in the Theory of Binary Forms , 1993 .

[9]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[10]  V. Strassen Gaussian elimination is not optimal , 1969 .

[11]  Shmuel Winograd,et al.  On multiplication of 2 × 2 matrices , 1971 .

[12]  J. Hüttenhain A Note on normalizations of orbit closures , 2015 .

[13]  Hwangrae Lee,et al.  Power Sum Decompositions of Elementary Symmetric Polynomials , 2015, 1508.05235.

[14]  J. M. Landsberg,et al.  Connections between conjectures of Alon-Tarsi, Hadamard-Howe, and integrals over the special unitary group , 2014, Discret. Math..

[15]  Fulvio Gesmundo,et al.  Geometric aspects of Iterated Matrix Multiplication , 2015, 1512.00766.

[16]  Shrawan Kumar,et al.  A study of the representations supported by the orbit closure of the determinant , 2011, Compositio Mathematica.

[17]  Joseph JáJá,et al.  On the Validity of the Direct Sum Conjecture , 1986, SIAM J. Comput..

[18]  Christopher Umans Group-theoretic algorithms for matrix multiplication , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[19]  Boris Alexeev,et al.  Tensor Rank: Some Lower and Upper Bounds , 2011, 2011 IEEE 26th Annual Conference on Computational Complexity.

[20]  Michel Brion,et al.  Stable properties of plethysm : on two conjectures of Foulkes , 1993 .

[21]  J. Landsberg,et al.  Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems, Second Edition , 2016 .

[22]  Mike E. Davies,et al.  Tensor Decompositions, State of the Art and Applications , 2009, 0905.0454.

[23]  Tomaž Košir,et al.  Determinantal representations of smooth cubic surfaces , 2006 .

[24]  J. M. Landsberg,et al.  P versus NP and geometry , 2009, J. Symb. Comput..

[25]  M. D. ATKINSON,et al.  Primitive spaces of matrices of bounded rank. II , 1981, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[26]  Jürgen Müller,et al.  Some Computations Regarding Foulkes' Conjecture , 2005, Exp. Math..

[27]  Jin-Yi Cai A Note on the Determinant and Permanent Problem , 1990, Inf. Comput..

[28]  Greta Panova,et al.  No Occurrence Obstructions in Geometric Complexity Theory , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[29]  D. Cartwright,et al.  Hilbert schemes of 8 points , 2008, 0803.0341.

[30]  J. M. Landsberg,et al.  On the third secant variety , 2011, 1111.7005.

[31]  J. M. Landsberg,et al.  Hypersurfaces with degenerate duals and the Geometric Complexity Theory Program , 2010, ArXiv.

[32]  Julian D. Laderman,et al.  A noncommutative algorithm for multiplying $3 \times 3$ matrices using 23 multiplications , 1976 .

[33]  Torsten Wedhorn,et al.  Algebraic Geometry I , 2010 .

[34]  R. Tennant Algebra , 1941, Nature.

[35]  R. Salem,et al.  On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. M. Landsberg,et al.  Complexity of Linear Circuits and Geometry , 2016, Found. Comput. Math..

[37]  E. Green Complete intersections and Gorenstein ideals , 1978 .

[38]  I. Shafarevich Basic algebraic geometry , 1974 .

[39]  Christopher Umans,et al.  A group-theoretic approach to fast matrix multiplication , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[40]  Amir Yehudayoff,et al.  Arithmetic Circuits: A survey of recent results and open questions , 2010, Found. Trends Theor. Comput. Sci..

[41]  Tristram Bogart,et al.  A Lower Bound for the Determinantal Complexity of a Hypersurface , 2015, Found. Comput. Math..

[42]  Markus Bläser Lower bounds for the bilinear complexity of associative algebras , 2000, computational complexity.

[43]  Arnold Schönhage,et al.  Partial and Total Matrix Multiplication , 1981, SIAM J. Comput..

[44]  Thomas Lickteig,et al.  A Note on Border Rank , 1984, Inf. Process. Lett..

[45]  Grazia Lotti,et al.  Approximate Solutions for the Bilinear Form Computational Problem , 1980, SIAM J. Comput..

[46]  David G. Glynn,et al.  The Conjectures of Alon--Tarsi and Rota in Dimension Prime Minus One , 2010, SIAM J. Discret. Math..

[47]  Abhinav Kumar,et al.  Using Elimination Theory to construct Rigid Matrices , 2009, FSTTCS.

[48]  K. Roberts,et al.  Thesis , 2002 .

[49]  Heydar Radjavi,et al.  On matrix spaces with zero determinant , 1985 .

[50]  J. Hadamard Sur les conditions de décomposition des formes , 1899 .

[51]  Arthur A. Drisko On the Number of Even and Odd Latin Squares of Orderp+1 , 1997 .

[52]  J. M. Landsberg,et al.  Determinantal equations for secant varieties and the Eisenbud–Koh–Stillman conjecture , 2010, J. Lond. Math. Soc..

[53]  V. Strassen Relative bilinear complexity and matrix multiplication. , 1987 .

[54]  L. Chiantini,et al.  Progress on the symmetric Strassen conjecture , 2014, 1405.3721.

[55]  Primary ideals associated to the linear strands of Lascoux's resolution and syzygies of the corresponding irreducible representations of the Lie superalgebra gl(m|n) , 2007 .

[56]  Meena Mahajan,et al.  Determinant: Combinatorics, Algorithms, and Complexity , 1997, Chic. J. Theor. Comput. Sci..

[57]  A. J. Stothers On the complexity of matrix multiplication , 2010 .

[58]  Grazia Lotti,et al.  O(n2.7799) Complexity for n*n Approximate Matrix Multiplication , 1979, Inf. Process. Lett..

[59]  A. Davie,et al.  Improved bound for complexity of matrix multiplication , 2013, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[60]  Thomas J. McKay,et al.  On Plethysm conjectures of Stanley and Foulkes , 2008 .

[61]  L. Csanky,et al.  Fast Parallel Matrix Inversion Algorithms , 1976, SIAM J. Comput..

[62]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[63]  Richard P. Brent,et al.  The Parallel Evaluation of General Arithmetic Expressions , 1974, JACM.

[64]  P. Griffiths,et al.  Algebraic geometry and local differential geometry , 1979 .

[65]  Satyanarayana V. Lokam Complexity Lower Bounds using Linear Algebra , 2009, Found. Trends Theor. Comput. Sci..

[66]  H. O. Foulkes Concomitants of the Quintic and Sextic Up To Degree Four in the Coefficients of the Ground Form , 1950 .

[67]  Pierre Lairez,et al.  The boundary of the orbit of the 3 by 3 determinant polynomial , 2016 .

[68]  Thomas Lickteig Typical tensorial rank , 1985 .

[69]  Ran Raz Elusive Functions and Lower Bounds for Arithmetic Circuits , 2010, Theory Comput..

[70]  Wolf Barth,et al.  Moduli of vector bundles on the projective plane , 1977 .

[71]  Leslie G. Valiant,et al.  Completeness classes in algebra , 1979, STOC.

[72]  M. Marcus,et al.  On the relation between the determinant and the permanent , 1961 .

[73]  J. M. Landsberg,et al.  On the geometry of border rank algorithms for matrix multiplication and other tensors with symmetry , 2016, ArXiv.

[74]  Marvin Marcus,et al.  The Permanent Function , 1962, Canadian Journal of Mathematics.

[75]  Arielle Leitner Limits Under Conjugacy of the Diagonal Subgroup in SL(n,R) , 2014, 1412.5523.

[76]  D. Mumford Algebraic Geometry I: Complex Projective Varieties , 1981 .

[77]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[78]  T. Mignon,et al.  A quadratic bound for the determinant and permanent problem , 2004 .

[79]  P. Gordan Das Zerfallen der Curven in gerade Linien , 1894 .

[80]  Yozô Matsushima Espaces homogènes de Stein des groupes de Lie complexes. II , 1960 .

[81]  BRUNO GRENET,et al.  AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM , 2012 .

[82]  Gian-Carlo Rota,et al.  On the relations of various conjectures on Latin squares and straightening coefficients , 1994, Discret. Math..

[83]  Christopher Umans,et al.  Fast matrix multiplication using coherent configurations , 2012, SODA.

[84]  Michael Sipser,et al.  The history and status of the P versus NP question , 1992, STOC '92.

[85]  Jan Verschelde,et al.  Using Monodromy to Decompose Solution Sets of Polynomial Systems into Irreducible Components , 2001 .

[86]  Jonathan Wahl,et al.  Gaussian maps and tensor products of irreducible representations , 1991 .

[87]  Ketan Mulmuley,et al.  Geometric Complexity Theory I: An Approach to the P vs. NP and Related Problems , 2002, SIAM J. Comput..

[88]  Shmuel Friedland,et al.  On tensors of border rank l in Cm×n×l , 2013 .

[89]  Sébastien Tavenas,et al.  Improved bounds for reduction to depth 4 and depth 3 , 2013, Inf. Comput..

[90]  E. Allman,et al.  Phylogenetic invariants for the general Markov model of sequence mutation. , 2003, Mathematical biosciences.

[91]  Joe W. Harris,et al.  Vector spaces of matrices of low rank , 1988 .

[92]  Zach Teitler,et al.  On maximum, typical and generic ranks , 2014, ArXiv.

[93]  Hans F. de Groote On Varieties of Optimal Algorithms for the Computation of Bilinear Mappings I. The Isotropy Group of a Bilinear Mapping , 1978, Theor. Comput. Sci..

[94]  Prolongations and Computational Algebra , 2006, Canadian Journal of Mathematics.

[95]  Markus Bläser Improvements of the Alder-Strassen Bound: Algebras with Nonzero Radical , 2001, ICALP.

[96]  Corrado Segre Preliminari di una teoria delle varietà luoghi di spazi , 1910 .

[97]  Dario Bini Relations between exact and approximate bilinear algorithms. Applications , 1980 .

[98]  Kosaku Nagasaka,et al.  Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation , 2014, ISSAC 2014.

[99]  J. M. Landsberg,et al.  An Overview of Mathematical Issues Arising in the Geometric Complexity Theory Approach to VP≠VNP , 2009, SIAM J. Comput..

[100]  Markus Bläser,et al.  Fast Matrix Multiplication , 2013, Theory Comput..

[101]  Anthony Iarrobino,et al.  Inverse system of a symbolic power III: thin algebras and fat points , 1997, Compositio Mathematica.

[102]  Volker Strassen,et al.  On the Algorithmic Complexity of Associative Algebras , 1981, Theor. Comput. Sci..

[103]  J. Dieudonné,et al.  Sur une généralisation du groupe orthogonal à quatre variables , 1948 .

[104]  Arnaud Beauville,et al.  Determinantal hypersurfaces , 1999 .

[105]  V. Strassen Rank and optimal computation of generic tensors , 1983 .

[106]  J. M. Landsberg,et al.  New Lower Bounds for the Border Rank of Matrix Multiplication , 2011, Theory Comput..

[107]  S. Garibaldi,et al.  Linear preservers and representations with a 1-dimensional ring of invariants , 2012, 1204.2840.

[108]  J. M. Landsberg,et al.  New Lower Bounds for the Rank of Matrix Multiplication , 2012, SIAM J. Comput..

[109]  David G. Glynn,et al.  Permanent formulae from the Veronesean , 2013, Des. Codes Cryptogr..

[110]  Joachim von zur Gathen Permanent and determinant , 1987 .

[111]  R. Brent Algorithms for matrix multiplication , 1970 .

[112]  N. R. Aravind,et al.  On the Expressive Power of Read-Once Determinants , 2015, FCT.

[113]  S. C. Black,et al.  A Note on Plethysm , 1989, Eur. J. Comb..

[114]  Maciej Gałązka,et al.  Vector bundles give equations of cactus varieties , 2016 .

[115]  Boris A. Trakhtenbrot,et al.  A Survey of Russian Approaches to Perebor (Brute-Force Searches) Algorithms , 1984, Annals of the History of Computing.

[116]  Leslie G. Valiant,et al.  Fast Parallel Computation of Polynomials Using Few Processors , 1983, SIAM J. Comput..

[117]  On symmetric degeneracy loci, spaces of symmetric matrices of constant rank and dual varieties , 1996, alg-geom/9611025.

[118]  Laurent Manivel,et al.  Gaussian Maps and Plethysm , 1992 .

[119]  Christian Ikenmeyer 2 Flow description of LR coefficients 2 . 1 Flows on digraphs , 2012 .

[120]  Hans F. de Groote On Varieties of Optimal Algorithms for the Computation of Bilinear Mappings. II. Optimal Algorithms for 2x2-Matrix Multiplication , 1978, Theor. Comput. Sci..

[121]  Ralf Fröberg,et al.  An inequality for Hilbert series of graded algebras. , 1985 .

[122]  Andrew J. Sommese,et al.  Symmetric Functions Applied to Decomposing Solution Sets of Polynomial Systems , 2002, SIAM J. Numer. Anal..

[123]  Amir Shpilka Affine projections of symmetric polynomials , 2002, J. Comput. Syst. Sci..

[124]  Laurent Manivel,et al.  On the asymptotics of Kronecker coefficients , 2014, Journal of Algebraic Combinatorics.

[125]  Hong Liu,et al.  Improved construction for universality of determinant and permanent , 2006, Inf. Process. Lett..

[126]  Markus Bläser,et al.  Complete Problems for Valiant's Class of qp-Computable Families of Polynomials , 2001, COCOON.

[127]  A. M. Popov,et al.  Irreducible simple linear Lie groups with finite standard subgroups of general position , 1975 .

[128]  A. Smirnov,et al.  The bilinear complexity and practical algorithms for matrix multiplication , 2013 .

[129]  G. Kempf,et al.  Instability in invariant theory , 1978, 1807.02890.

[130]  Seinosuke Toda,et al.  Classes of Arithmetic Circuits Capturing the Complexity of Computing the Determinant , 1992 .

[131]  I. Fischer Sums of like powers of multivariate linear forms , 1994 .

[132]  Alessandro Terracini,et al.  Sulle vk per cui la varietÀ degli sh (h + 1) seganti ha dimensione minore delĽordinario , 1911 .

[133]  J. Landsberg,et al.  Generalizations of Strassen's Equations for Secant Varieties of Segre Varieties , 2006, math/0601097.

[134]  Avi Wigderson,et al.  Depth-3 arithmetic circuits over fields of characteristic zero , 2002, computational complexity.

[135]  Nader H. Bshouty On the Direct Sum Conjecture in the Straight Line Model , 1998, J. Complex..

[136]  Christian Ikenmeyer,et al.  Symmetrizing tableaux and the 5th case of the Foulkes conjecture , 2015, J. Symb. Comput..

[137]  Roger Howe,et al.  (GLn, GLm)-duality and symmetric plethysm , 1987 .

[138]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[139]  Laurent Manivel,et al.  Applications de Gauss et pléthysme , 1997 .

[140]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[141]  Kristian Ranestad,et al.  On the rank of a symmetric form , 2011, 1104.3648.

[142]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[143]  B. Griesser A lower bound for the border rank of a bilinear map , 1986 .

[144]  J. M. Landsberg,et al.  Padded Polynomials, Their Cousins, and Geometric Complexity Theory , 2012, ArXiv.

[145]  Weronika Buczy'nska,et al.  Secant varieties to high degree Veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes , 2010, 1012.3563.

[146]  M. Gerstenhaber ON DOMINANCE AND VARIETIES OF COMMUTING MATRICES , 1961 .

[147]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[148]  Shmuel Friedland,et al.  A proof of the set-theoretic version of the salmon conjecture , 2011, 1104.1776.

[149]  Ketan Mulmuley,et al.  Geometric Complexity Theory II: Towards Explicit Obstructions for Embeddings among Class Varieties , 2006, SIAM J. Comput..

[150]  Claudio Procesi,et al.  The invariant theory of n × n matrices , 1976 .

[151]  Ke Ye The Stabilizer Of Immanants , 2011 .

[152]  Noam Nisan,et al.  Lower bounds on arithmetic circuits via partial derivatives , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[153]  Guillaume Malod,et al.  Characterizing Valiant's algebraic complexity classes , 2008, J. Complex..

[154]  Don Coppersmith,et al.  On the Asymptotic Complexity of Matrix Multiplication , 1982, SIAM J. Comput..

[155]  J. M. Landsberg,et al.  Equations for Lower Bounds on Border Rank , 2013, Exp. Math..

[156]  J. Landsberg,et al.  Equations for secant varieties of Veronese and other varieties , 2011, 1111.4567.

[157]  Rodney W. Johnson,et al.  Noncommutative Bilinear Algorithms for 3 x 3 Matrix Multiplication , 1986, SIAM J. Comput..

[158]  Avi Wigderson,et al.  Partial Derivatives in Arithmetic Complexity and Beyond , 2011, Found. Trends Theor. Comput. Sci..

[159]  Jonathan D. Hauenstein,et al.  Membership tests for images of algebraic sets by linear projections , 2013, Appl. Math. Comput..

[160]  Joachim von zur Gathen,et al.  Feasible Arithmetic Computations: Valiant's Hypothesis , 1987, J. Symb. Comput..

[161]  J. M. Landsberg,et al.  On the Ideals of Secant Varieties of Segre Varieties , 2004, Found. Comput. Math..

[162]  J. Landsberg The border rank of the multiplication of 2×2 matrices is seven , 2005 .

[163]  J. M. Landsberg Nontriviality of equations and explicit tensors in Cm⊗Cm⊗Cm of border rank at least 2m−2 , 2015 .

[164]  Michael Ben-Or,et al.  Computing Algebraic Formulas Using a Constant Number of Registers , 1992, SIAM J. Comput..

[165]  Ephraim Feig,et al.  On the direct sum conjecture , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[166]  A. Smirnov,et al.  On the exact and approximate bilinear complexities of multiplication of 4×2 and 2×2 matrices , 2013 .

[167]  J. Hadamard Mémoire sur l'élimination , 1897 .

[168]  Pascal Koiran,et al.  Arithmetic circuits: The chasm at depth four gets wider , 2010, Theor. Comput. Sci..

[169]  V. Vinay,et al.  Arithmetic Circuits: A Chasm at Depth Four , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[170]  J. M. Landsberg,et al.  On the Geometry of Border Rank Algorithms for n × 2 by 2 × 2 Matrix Multiplication , 2015, Exp. Math..

[171]  Neeraj Kayal,et al.  Arithmetic Circuits: A Chasm at Depth Three , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[172]  J. M. Landsberg,et al.  Geometric complexity theory: an introduction for geometers , 2013, ANNALI DELL'UNIVERSITA' DI FERRARA.

[173]  Levent Alpoge,et al.  Square-root cancellation for the signs of Latin squares , 2014, Comb..

[174]  G. Gotzmann,et al.  Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten Ringes , 1978 .

[175]  L. Ahlfors Complex Analysis , 1979 .

[176]  Ketan Mulmuley,et al.  Lower Bounds in a Parallel Model without Bit Operations , 1999, SIAM J. Comput..

[177]  Shrawan Kumar,et al.  Geometry of orbits of permanents and determinants , 2010, 1007.1695.