Geometry and Complexity Theory
暂无分享,去创建一个
[1] G. Ottaviani,et al. On the Alexander–Hirschowitz theorem , 2007, math/0701409.
[2] Leslie G. Valiant,et al. Graph-Theoretic Arguments in Low-Level Complexity , 1977, MFCS.
[3] Saugata Basu,et al. A Complexity Theory of Constructible Functions and Sheaves , 2013, Found. Comput. Math..
[4] K. Ramachandra,et al. Vermeidung von Divisionen. , 1973 .
[5] Ueber ein Flächennetz zweiter Ordnung , 1877 .
[6] K. Ranestad,et al. Varieties of sums of powers , 1998, math/9801110.
[7] Noga Alon,et al. Colorings and orientations of graphs , 1992, Comb..
[8] Jerzy Weyman. Gordan Ideals in the Theory of Binary Forms , 1993 .
[9] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[10] V. Strassen. Gaussian elimination is not optimal , 1969 .
[11] Shmuel Winograd,et al. On multiplication of 2 × 2 matrices , 1971 .
[12] J. Hüttenhain. A Note on normalizations of orbit closures , 2015 .
[13] Hwangrae Lee,et al. Power Sum Decompositions of Elementary Symmetric Polynomials , 2015, 1508.05235.
[14] J. M. Landsberg,et al. Connections between conjectures of Alon-Tarsi, Hadamard-Howe, and integrals over the special unitary group , 2014, Discret. Math..
[15] Fulvio Gesmundo,et al. Geometric aspects of Iterated Matrix Multiplication , 2015, 1512.00766.
[16] Shrawan Kumar,et al. A study of the representations supported by the orbit closure of the determinant , 2011, Compositio Mathematica.
[17] Joseph JáJá,et al. On the Validity of the Direct Sum Conjecture , 1986, SIAM J. Comput..
[18] Christopher Umans. Group-theoretic algorithms for matrix multiplication , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).
[19] Boris Alexeev,et al. Tensor Rank: Some Lower and Upper Bounds , 2011, 2011 IEEE 26th Annual Conference on Computational Complexity.
[20] Michel Brion,et al. Stable properties of plethysm : on two conjectures of Foulkes , 1993 .
[21] J. Landsberg,et al. Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems, Second Edition , 2016 .
[22] Mike E. Davies,et al. Tensor Decompositions, State of the Art and Applications , 2009, 0905.0454.
[23] Tomaž Košir,et al. Determinantal representations of smooth cubic surfaces , 2006 .
[24] J. M. Landsberg,et al. P versus NP and geometry , 2009, J. Symb. Comput..
[25] M. D. ATKINSON,et al. Primitive spaces of matrices of bounded rank. II , 1981, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[26] Jürgen Müller,et al. Some Computations Regarding Foulkes' Conjecture , 2005, Exp. Math..
[27] Jin-Yi Cai. A Note on the Determinant and Permanent Problem , 1990, Inf. Comput..
[28] Greta Panova,et al. No Occurrence Obstructions in Geometric Complexity Theory , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).
[29] D. Cartwright,et al. Hilbert schemes of 8 points , 2008, 0803.0341.
[30] J. M. Landsberg,et al. On the third secant variety , 2011, 1111.7005.
[31] J. M. Landsberg,et al. Hypersurfaces with degenerate duals and the Geometric Complexity Theory Program , 2010, ArXiv.
[32] Julian D. Laderman,et al. A noncommutative algorithm for multiplying $3 \times 3$ matrices using 23 multiplications , 1976 .
[33] Torsten Wedhorn,et al. Algebraic Geometry I , 2010 .
[34] R. Tennant. Algebra , 1941, Nature.
[35] R. Salem,et al. On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1942, Proceedings of the National Academy of Sciences of the United States of America.
[36] J. M. Landsberg,et al. Complexity of Linear Circuits and Geometry , 2016, Found. Comput. Math..
[37] E. Green. Complete intersections and Gorenstein ideals , 1978 .
[38] I. Shafarevich. Basic algebraic geometry , 1974 .
[39] Christopher Umans,et al. A group-theoretic approach to fast matrix multiplication , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..
[40] Amir Yehudayoff,et al. Arithmetic Circuits: A survey of recent results and open questions , 2010, Found. Trends Theor. Comput. Sci..
[41] Tristram Bogart,et al. A Lower Bound for the Determinantal Complexity of a Hypersurface , 2015, Found. Comput. Math..
[42] Markus Bläser. Lower bounds for the bilinear complexity of associative algebras , 2000, computational complexity.
[43] Arnold Schönhage,et al. Partial and Total Matrix Multiplication , 1981, SIAM J. Comput..
[44] Thomas Lickteig,et al. A Note on Border Rank , 1984, Inf. Process. Lett..
[45] Grazia Lotti,et al. Approximate Solutions for the Bilinear Form Computational Problem , 1980, SIAM J. Comput..
[46] David G. Glynn,et al. The Conjectures of Alon--Tarsi and Rota in Dimension Prime Minus One , 2010, SIAM J. Discret. Math..
[47] Abhinav Kumar,et al. Using Elimination Theory to construct Rigid Matrices , 2009, FSTTCS.
[48] K. Roberts,et al. Thesis , 2002 .
[49] Heydar Radjavi,et al. On matrix spaces with zero determinant , 1985 .
[50] J. Hadamard. Sur les conditions de décomposition des formes , 1899 .
[51] Arthur A. Drisko. On the Number of Even and Odd Latin Squares of Orderp+1 , 1997 .
[52] J. M. Landsberg,et al. Determinantal equations for secant varieties and the Eisenbud–Koh–Stillman conjecture , 2010, J. Lond. Math. Soc..
[53] V. Strassen. Relative bilinear complexity and matrix multiplication. , 1987 .
[54] L. Chiantini,et al. Progress on the symmetric Strassen conjecture , 2014, 1405.3721.
[56] Meena Mahajan,et al. Determinant: Combinatorics, Algorithms, and Complexity , 1997, Chic. J. Theor. Comput. Sci..
[57] A. J. Stothers. On the complexity of matrix multiplication , 2010 .
[58] Grazia Lotti,et al. O(n2.7799) Complexity for n*n Approximate Matrix Multiplication , 1979, Inf. Process. Lett..
[59] A. Davie,et al. Improved bound for complexity of matrix multiplication , 2013, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[60] Thomas J. McKay,et al. On Plethysm conjectures of Stanley and Foulkes , 2008 .
[61] L. Csanky,et al. Fast Parallel Matrix Inversion Algorithms , 1976, SIAM J. Comput..
[62] Michael Clausen,et al. Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.
[63] Richard P. Brent,et al. The Parallel Evaluation of General Arithmetic Expressions , 1974, JACM.
[64] P. Griffiths,et al. Algebraic geometry and local differential geometry , 1979 .
[65] Satyanarayana V. Lokam. Complexity Lower Bounds using Linear Algebra , 2009, Found. Trends Theor. Comput. Sci..
[66] H. O. Foulkes. Concomitants of the Quintic and Sextic Up To Degree Four in the Coefficients of the Ground Form , 1950 .
[67] Pierre Lairez,et al. The boundary of the orbit of the 3 by 3 determinant polynomial , 2016 .
[68] Thomas Lickteig. Typical tensorial rank , 1985 .
[69] Ran Raz. Elusive Functions and Lower Bounds for Arithmetic Circuits , 2010, Theory Comput..
[70] Wolf Barth,et al. Moduli of vector bundles on the projective plane , 1977 .
[71] Leslie G. Valiant,et al. Completeness classes in algebra , 1979, STOC.
[72] M. Marcus,et al. On the relation between the determinant and the permanent , 1961 .
[73] J. M. Landsberg,et al. On the geometry of border rank algorithms for matrix multiplication and other tensors with symmetry , 2016, ArXiv.
[74] Marvin Marcus,et al. The Permanent Function , 1962, Canadian Journal of Mathematics.
[75] Arielle Leitner. Limits Under Conjugacy of the Diagonal Subgroup in SL(n,R) , 2014, 1412.5523.
[76] D. Mumford. Algebraic Geometry I: Complex Projective Varieties , 1981 .
[77] D. Eisenbud. Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .
[78] T. Mignon,et al. A quadratic bound for the determinant and permanent problem , 2004 .
[79] P. Gordan. Das Zerfallen der Curven in gerade Linien , 1894 .
[80] Yozô Matsushima. Espaces homogènes de Stein des groupes de Lie complexes. II , 1960 .
[81] BRUNO GRENET,et al. AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM , 2012 .
[82] Gian-Carlo Rota,et al. On the relations of various conjectures on Latin squares and straightening coefficients , 1994, Discret. Math..
[83] Christopher Umans,et al. Fast matrix multiplication using coherent configurations , 2012, SODA.
[84] Michael Sipser,et al. The history and status of the P versus NP question , 1992, STOC '92.
[85] Jan Verschelde,et al. Using Monodromy to Decompose Solution Sets of Polynomial Systems into Irreducible Components , 2001 .
[86] Jonathan Wahl,et al. Gaussian maps and tensor products of irreducible representations , 1991 .
[87] Ketan Mulmuley,et al. Geometric Complexity Theory I: An Approach to the P vs. NP and Related Problems , 2002, SIAM J. Comput..
[88] Shmuel Friedland,et al. On tensors of border rank l in Cm×n×l , 2013 .
[89] Sébastien Tavenas,et al. Improved bounds for reduction to depth 4 and depth 3 , 2013, Inf. Comput..
[90] E. Allman,et al. Phylogenetic invariants for the general Markov model of sequence mutation. , 2003, Mathematical biosciences.
[91] Joe W. Harris,et al. Vector spaces of matrices of low rank , 1988 .
[92] Zach Teitler,et al. On maximum, typical and generic ranks , 2014, ArXiv.
[93] Hans F. de Groote. On Varieties of Optimal Algorithms for the Computation of Bilinear Mappings I. The Isotropy Group of a Bilinear Mapping , 1978, Theor. Comput. Sci..
[94] Prolongations and Computational Algebra , 2006, Canadian Journal of Mathematics.
[95] Markus Bläser. Improvements of the Alder-Strassen Bound: Algebras with Nonzero Radical , 2001, ICALP.
[96] Corrado Segre. Preliminari di una teoria delle varietà luoghi di spazi , 1910 .
[97] Dario Bini. Relations between exact and approximate bilinear algorithms. Applications , 1980 .
[98] Kosaku Nagasaka,et al. Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation , 2014, ISSAC 2014.
[99] J. M. Landsberg,et al. An Overview of Mathematical Issues Arising in the Geometric Complexity Theory Approach to VP≠VNP , 2009, SIAM J. Comput..
[100] Markus Bläser,et al. Fast Matrix Multiplication , 2013, Theory Comput..
[101] Anthony Iarrobino,et al. Inverse system of a symbolic power III: thin algebras and fat points , 1997, Compositio Mathematica.
[102] Volker Strassen,et al. On the Algorithmic Complexity of Associative Algebras , 1981, Theor. Comput. Sci..
[103] J. Dieudonné,et al. Sur une généralisation du groupe orthogonal à quatre variables , 1948 .
[104] Arnaud Beauville,et al. Determinantal hypersurfaces , 1999 .
[105] V. Strassen. Rank and optimal computation of generic tensors , 1983 .
[106] J. M. Landsberg,et al. New Lower Bounds for the Border Rank of Matrix Multiplication , 2011, Theory Comput..
[107] S. Garibaldi,et al. Linear preservers and representations with a 1-dimensional ring of invariants , 2012, 1204.2840.
[108] J. M. Landsberg,et al. New Lower Bounds for the Rank of Matrix Multiplication , 2012, SIAM J. Comput..
[109] David G. Glynn,et al. Permanent formulae from the Veronesean , 2013, Des. Codes Cryptogr..
[110] Joachim von zur Gathen. Permanent and determinant , 1987 .
[111] R. Brent. Algorithms for matrix multiplication , 1970 .
[112] N. R. Aravind,et al. On the Expressive Power of Read-Once Determinants , 2015, FCT.
[113] S. C. Black,et al. A Note on Plethysm , 1989, Eur. J. Comb..
[114] Maciej Gałązka,et al. Vector bundles give equations of cactus varieties , 2016 .
[115] Boris A. Trakhtenbrot,et al. A Survey of Russian Approaches to Perebor (Brute-Force Searches) Algorithms , 1984, Annals of the History of Computing.
[116] Leslie G. Valiant,et al. Fast Parallel Computation of Polynomials Using Few Processors , 1983, SIAM J. Comput..
[117] On symmetric degeneracy loci, spaces of symmetric matrices of constant rank and dual varieties , 1996, alg-geom/9611025.
[118] Laurent Manivel,et al. Gaussian Maps and Plethysm , 1992 .
[119] Christian Ikenmeyer. 2 Flow description of LR coefficients 2 . 1 Flows on digraphs , 2012 .
[120] Hans F. de Groote. On Varieties of Optimal Algorithms for the Computation of Bilinear Mappings. II. Optimal Algorithms for 2x2-Matrix Multiplication , 1978, Theor. Comput. Sci..
[121] Ralf Fröberg,et al. An inequality for Hilbert series of graded algebras. , 1985 .
[122] Andrew J. Sommese,et al. Symmetric Functions Applied to Decomposing Solution Sets of Polynomial Systems , 2002, SIAM J. Numer. Anal..
[123] Amir Shpilka. Affine projections of symmetric polynomials , 2002, J. Comput. Syst. Sci..
[124] Laurent Manivel,et al. On the asymptotics of Kronecker coefficients , 2014, Journal of Algebraic Combinatorics.
[125] Hong Liu,et al. Improved construction for universality of determinant and permanent , 2006, Inf. Process. Lett..
[126] Markus Bläser,et al. Complete Problems for Valiant's Class of qp-Computable Families of Polynomials , 2001, COCOON.
[127] A. M. Popov,et al. Irreducible simple linear Lie groups with finite standard subgroups of general position , 1975 .
[128] A. Smirnov,et al. The bilinear complexity and practical algorithms for matrix multiplication , 2013 .
[129] G. Kempf,et al. Instability in invariant theory , 1978, 1807.02890.
[130] Seinosuke Toda,et al. Classes of Arithmetic Circuits Capturing the Complexity of Computing the Determinant , 1992 .
[131] I. Fischer. Sums of like powers of multivariate linear forms , 1994 .
[132] Alessandro Terracini,et al. Sulle vk per cui la varietÀ degli sh (h + 1) seganti ha dimensione minore delĽordinario , 1911 .
[133] J. Landsberg,et al. Generalizations of Strassen's Equations for Secant Varieties of Segre Varieties , 2006, math/0601097.
[134] Avi Wigderson,et al. Depth-3 arithmetic circuits over fields of characteristic zero , 2002, computational complexity.
[135] Nader H. Bshouty. On the Direct Sum Conjecture in the Straight Line Model , 1998, J. Complex..
[136] Christian Ikenmeyer,et al. Symmetrizing tableaux and the 5th case of the Foulkes conjecture , 2015, J. Symb. Comput..
[137] Roger Howe,et al. (GLn, GLm)-duality and symmetric plethysm , 1987 .
[138] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[139] Laurent Manivel,et al. Applications de Gauss et pléthysme , 1997 .
[140] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[141] Kristian Ranestad,et al. On the rank of a symmetric form , 2011, 1104.3648.
[142] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.
[143] B. Griesser. A lower bound for the border rank of a bilinear map , 1986 .
[144] J. M. Landsberg,et al. Padded Polynomials, Their Cousins, and Geometric Complexity Theory , 2012, ArXiv.
[145] Weronika Buczy'nska,et al. Secant varieties to high degree Veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes , 2010, 1012.3563.
[146] M. Gerstenhaber. ON DOMINANCE AND VARIETIES OF COMMUTING MATRICES , 1961 .
[147] Leslie G. Valiant,et al. The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..
[148] Shmuel Friedland,et al. A proof of the set-theoretic version of the salmon conjecture , 2011, 1104.1776.
[149] Ketan Mulmuley,et al. Geometric Complexity Theory II: Towards Explicit Obstructions for Embeddings among Class Varieties , 2006, SIAM J. Comput..
[150] Claudio Procesi,et al. The invariant theory of n × n matrices , 1976 .
[151] Ke Ye. The Stabilizer Of Immanants , 2011 .
[152] Noam Nisan,et al. Lower bounds on arithmetic circuits via partial derivatives , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.
[153] Guillaume Malod,et al. Characterizing Valiant's algebraic complexity classes , 2008, J. Complex..
[154] Don Coppersmith,et al. On the Asymptotic Complexity of Matrix Multiplication , 1982, SIAM J. Comput..
[155] J. M. Landsberg,et al. Equations for Lower Bounds on Border Rank , 2013, Exp. Math..
[156] J. Landsberg,et al. Equations for secant varieties of Veronese and other varieties , 2011, 1111.4567.
[157] Rodney W. Johnson,et al. Noncommutative Bilinear Algorithms for 3 x 3 Matrix Multiplication , 1986, SIAM J. Comput..
[158] Avi Wigderson,et al. Partial Derivatives in Arithmetic Complexity and Beyond , 2011, Found. Trends Theor. Comput. Sci..
[159] Jonathan D. Hauenstein,et al. Membership tests for images of algebraic sets by linear projections , 2013, Appl. Math. Comput..
[160] Joachim von zur Gathen,et al. Feasible Arithmetic Computations: Valiant's Hypothesis , 1987, J. Symb. Comput..
[161] J. M. Landsberg,et al. On the Ideals of Secant Varieties of Segre Varieties , 2004, Found. Comput. Math..
[162] J. Landsberg. The border rank of the multiplication of 2×2 matrices is seven , 2005 .
[163] J. M. Landsberg. Nontriviality of equations and explicit tensors in Cm⊗Cm⊗Cm of border rank at least 2m−2 , 2015 .
[164] Michael Ben-Or,et al. Computing Algebraic Formulas Using a Constant Number of Registers , 1992, SIAM J. Comput..
[165] Ephraim Feig,et al. On the direct sum conjecture , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).
[166] A. Smirnov,et al. On the exact and approximate bilinear complexities of multiplication of 4×2 and 2×2 matrices , 2013 .
[167] J. Hadamard. Mémoire sur l'élimination , 1897 .
[168] Pascal Koiran,et al. Arithmetic circuits: The chasm at depth four gets wider , 2010, Theor. Comput. Sci..
[169] V. Vinay,et al. Arithmetic Circuits: A Chasm at Depth Four , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.
[170] J. M. Landsberg,et al. On the Geometry of Border Rank Algorithms for n × 2 by 2 × 2 Matrix Multiplication , 2015, Exp. Math..
[171] Neeraj Kayal,et al. Arithmetic Circuits: A Chasm at Depth Three , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.
[172] J. M. Landsberg,et al. Geometric complexity theory: an introduction for geometers , 2013, ANNALI DELL'UNIVERSITA' DI FERRARA.
[173] Levent Alpoge,et al. Square-root cancellation for the signs of Latin squares , 2014, Comb..
[174] G. Gotzmann,et al. Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten Ringes , 1978 .
[175] L. Ahlfors. Complex Analysis , 1979 .
[176] Ketan Mulmuley,et al. Lower Bounds in a Parallel Model without Bit Operations , 1999, SIAM J. Comput..
[177] Shrawan Kumar,et al. Geometry of orbits of permanents and determinants , 2010, 1007.1695.