ROTATION IN THE PLEIADES WITH K2. III. SPECULATIONS ON ORIGINS AND EVOLUTION

We use high-quality K2 light curves for hundreds of stars in the Pleiades to better understand the angular momentum evolution and magnetic dynamos of young low-mass stars. The K2 light curves provide not only rotational periods but also detailed information from the shape of the phased light curve that was not available in previous studies. A slowly rotating sequence begins at ∼ 1.1 (spectral type F5) and ends at ∼ 3.7 (spectral type K8), with periods rising from ∼2 to ∼11 days in that interval. A total of 52% of the Pleiades members in that color interval have periods within 30% of a curve defining the slow sequence; the slowly rotating fraction decreases significantly redward of = 2.6. Nearly all of the slow-sequence stars show light curves that evolve significantly on timescales less than the K2 campaign duration. The majority of the FGK Pleiades members identified as photometric binaries are relatively rapidly rotating, perhaps because binarity inhibits star–disk angular momentum loss mechanisms during pre-main-sequence evolution. The fully convective late M dwarf Pleiades members (5.0 < < 6.0) nearly always show stable light curves, with little spot evolution or evidence of differential rotation. During pre-main-sequence evolution from ∼3 Myr (NGC 2264 age) to ∼125 Myr (Pleiades age), stars of 0.3 shed about half of their angular momentum, with the fractional change in period between 3 and 125 Myr being nearly independent of mass for fully convective stars. Our data also suggest that very low mass binaries form with rotation periods more similar to each other and faster than would be true if drawn at random from the parent population of single stars.

[1]  M. Pinsonneault,et al.  ROTATION IN THE PLEIADES WITH K2. II. MULTIPERIOD STARS , 2016, 1606.00055.

[2]  M. Pinsonneault,et al.  ROTATION IN THE PLEIADES WITH K2. I. DATA AND FIRST RESULTS , 2016, 1606.00052.

[3]  K. Covey,et al.  K2 ROTATION PERIODS FOR LOW-MASS HYADS AND THE IMPLICATIONS FOR GYROCHRONOLOGY , 2016, 1603.00419.

[4]  Spitzer Science Center,et al.  WHY ARE RAPIDLY ROTATING M DWARFS IN THE PLEIADES SO (INFRA)RED? NEW PERIOD MEASUREMENTS CONFIRM ROTATION-DEPENDENT COLOR OFFSETS FROM THE CLUSTER SEQUENCE , 2016, 1601.07237.

[5]  Michael H. Wong,et al.  NEPTUNE’S DYNAMIC ATMOSPHERE FROM KEPLER K2 OBSERVATIONS: IMPLICATIONS FOR BROWN DWARF LIGHT CURVE ANALYSES , 2015, The Astrophysical journal.

[6]  T. Granzer,et al.  A color-period diagram for the open cluster M 48 (NGC 2548), and its rotational age , 2015, 1511.00554.

[7]  E. Berger,et al.  KEPLER MONITORING OF AN L DWARF. II. CLOUDS WITH MULTI-YEAR LIFETIMES , 2015, 1509.07186.

[8]  J. Munn,et al.  THE FIRST U.S. NAVAL OBSERVATORY ROBOTIC ASTROMETRIC TELESCOPE CATALOG , 2015, 1508.04637.

[9]  L. Balona,et al.  Pulsation frequency distribution in δ Scuti stars , 2015, 1505.07216.

[10]  J. Davenport,et al.  DETECTING DIFFERENTIAL ROTATION AND STARSPOT EVOLUTION ON THE M DWARF GJ 1243 WITH KEPLER , 2015, 1505.01524.

[11]  Timothy D. Brandt,et al.  THE AGE AND AGE SPREAD OF THE PRAESEPE AND HYADES CLUSTERS: A CONSISTENT, ∼800 Myr PICTURE FROM ROTATING STELLAR MODELS , 2015, 1504.00004.

[12]  M. Gudel,et al.  Stellar winds on the main-sequence - II. The evolution of rotation and winds , 2015, 1503.07494.

[13]  J. Linsky,et al.  Observations of Strong Magnetic Fields in Nondegenerate Stars , 2015 .

[14]  F. Allard,et al.  New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit , 2015, 1503.04107.

[15]  F. Gallet,et al.  Improved angular momentum evolution model for solar-like stars II. Exploring the mass dependence , 2015, 1502.05801.

[16]  E. Bertin,et al.  The Seven Sisters DANCe. I. Empirical isochrones, Luminosity and Mass Functions of the Pleiades cluster , 2015, 1502.03728.

[17]  Daniel J. Carson,et al.  REVERBERATION MAPPING OF THE KEPLER FIELD AGN KA1858+4850 , 2014, 1409.0058.

[18]  Natalie M. Batalha,et al.  Exploring exoplanet populations with NASA’s Kepler Mission , 2014, Proceedings of the National Academy of Sciences.

[19]  K. Stassun,et al.  NEW BVIC PHOTOMETRY OF LOW-MASS PLEIADES STARS: EXPLORING THE EFFECTS OF ROTATION ON BROADBAND COLORS , 2014, 1407.0357.

[20]  R. Sanchis-Ojeda,et al.  M-DWARF RAPID ROTATORS AND THE DETECTION OF RELATIVELY YOUNG MULTIPLE M-STAR SYSTEMS , 2014, 1405.1493.

[21]  T. Mazeh,et al.  ROTATION PERIODS OF 34,030 KEPLER MAIN-SEQUENCE STARS: THE FULL AUTOCORRELATION SAMPLE , 2014, 1402.5694.

[22]  F. Mullally,et al.  The K2 Mission: Characterization and Early Results , 2014, 1402.5163.

[23]  L. M. Sarro,et al.  Cluster membership probabilities from proper motions and multiwavelength photometric catalogues: I. Method and application to the Pleiades cluster , 2014, 1401.7427.

[24]  G. Basri,et al.  Rotation and differential rotation of active Kepler stars , 2013, 1308.1508.

[25]  E. Mamajek,et al.  INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS , 2013, 1307.2657.

[26]  F. Gallet,et al.  Improved angular momentum evolution model for solar-like stars , 2013, 1306.2130.

[27]  A. Miglio,et al.  Fundamental stellar properties from asteroseismology , 2013, Proceedings of the International Astronomical Union.

[28]  T. Mazeh,et al.  Measuring the rotation period distribution of field M dwarfs with Kepler , 2013, 1303.6787.

[29]  F. Favata,et al.  Rotation in NGC 2264: a study based on CoRoT photometric observations , 2013, 1301.1856.

[30]  M. Reid,et al.  A VLBI resolution of the Pleiades distance controversy , 2012, Science.

[31]  Gottingen,et al.  CAN WE PREDICT THE GLOBAL MAGNETIC TOPOLOGY OF A PRE-MAIN-SEQUENCE STAR FROM ITS POSITION IN THE HERTZSPRUNG–RUSSELL DIAGRAM? , 2012, 1206.5238.

[32]  Takashi Nagao,et al.  Superflares on solar-type stars , 2012, Nature.

[33]  Heidelberg,et al.  Astrometric and photometric initial mass functions from the UKIDSS Galactic Clusters Survey – I. The Pleiades★ , 2012, 1204.2659.

[34]  G. Hallinan,et al.  ROTATIONAL VELOCITIES OF INDIVIDUAL COMPONENTS IN VERY LOW MASS BINARIES , 2012, 1202.5555.

[35]  B. Macintosh,et al.  A SUBSTELLAR COMPANION TO THE DUSTY PLEIADES STAR HD 23514 , 2011, 1112.4815.

[36]  P. Tenenbaum,et al.  The Kepler view of γ Doradus stars , 2011 .

[37]  Berkeley,et al.  THE FACTORY AND THE BEEHIVE. I. ROTATION PERIODS FOR LOW-MASS STARS IN PRAESEPE , 2011, 1107.4039.

[38]  K. Stassun,et al.  THE COLOR–PERIOD DIAGRAM AND STELLAR ROTATIONAL EVOLUTION—NEW ROTATION PERIOD MEASUREMENTS IN THE OPEN CLUSTER M34 , 2011, 1103.5171.

[39]  S. Barnes A SIMPLE NONLINEAR MODEL FOR THE ROTATION OF MAIN-SEQUENCE COOL STARS. I. INTRODUCTION, IMPLICATIONS FOR GYROCHRONOLOGY, AND COLOR–PERIOD DIAGRAMS , 2010 .

[40]  Sara Seager,et al.  KEPLER ECLIPSING BINARY STARS. I. CATALOG AND PRINCIPAL CHARACTERIZATION OF 1879 ECLIPSING BINARIES IN THE FIRST DATA RELEASE , 2010, 1006.2815.

[41]  R. Noyes,et al.  A large sample of photometric rotation periods for FGK Pleiades stars , 2010, 1006.0950.

[42]  X. Delfosse,et al.  Large-scale magnetic topologies of late M dwarfs★: Magnetic topologies of late M dwarfs , 2010, 1005.5552.

[43]  G. Rieke,et al.  DEBRIS DISKS AROUND SOLAR-TYPE STARS: OBSERVATIONS OF THE PLEIADES WITH THE SPITZER SPACE TELESCOPE , 2010, 1003.0351.

[44]  S. Messina,et al.  RACE-OC project: rotation and variability in the open cluster M 11 (NGC 6705) , 2009, 0912.4131.

[45]  H Germany,et al.  Rotational studies in the Orion Nebula Cluster: from solar mass stars to brown dwarfs , 2009, 0906.2419.

[46]  J. Landstreet,et al.  Magnetic Fields of Nondegenerate Stars , 2009, 0904.1938.

[47]  F. Grundahl,et al.  AGE AND DISTANCE FOR THE OLD OPEN CLUSTER NGC 188 FROM THE ECLIPSING BINARY MEMBER V 12 , 2009, 0903.3566.

[48]  M. Pinsonneault,et al.  DEEP MMT TRANSIT SURVEY OF THE OPEN CLUSTER M37. III. STELLAR ROTATION AT 550 Myr , 2008, 0803.1488.

[49]  M. Irwin,et al.  The Monitor project: rotation periods of low-mass stars in M50 , 2008, 0810.5110.

[50]  X. Delfosse,et al.  Large-scale magnetic topologies of early M dwarfs , 2008, 0809.0269.

[51]  X. Delfosse,et al.  Large-scale magnetic topologies of late M dwarfs⋆ , 2008, 0808.1423.

[52]  M. Bessell,et al.  THE INITIAL MASS FUNCTION AND YOUNG BROWN DWARF CANDIDATES IN NGC 2264. III. PHOTOMETRIC DATA , 2008 .

[53]  B. Zuckerman,et al.  Warm Dust in the Terrestrial Planet Zone of a Sun-like Pleiades Star: Collisions between Planetary Embryos? , 2007, 0711.2111.

[54]  K. Stassun,et al.  The Effect of Binarity on Stellar Rotation: Beyond the Reach of Tides , 2007, 0707.1087.

[55]  B. J. Taylor,et al.  The Benchmark Cluster Reddening Project. I. Reddening Values for the Hyades, Coma, and Praesepe , 2006 .

[56]  S. Hodgkin,et al.  The Monitor project: rotation of low-mass stars in the open cluster NGC 2547 , 2006, astro-ph/0702518.

[57]  G. Chabrier,et al.  Large-scale alpha^2-dynamo in low-mass stars and brown dwarfs , 2005, astro-ph/0510075.

[58]  C. Bailer-Jones,et al.  Rotational evolution of low mass stars: The case of NGC 2264 ? , 2005 .

[59]  M. Dupret,et al.  Theoretical instability strips for δ Scuti and γ Doradus stars , 2004 .

[60]  M. Pinsonneault,et al.  Why Are the K Dwarfs in the Pleiades So Blue? , 2003, astro-ph/0306127.

[61]  M. Pinsonneault,et al.  Rotation and Activity in the Solar-Metallicity Open Cluster NGC 2516 , 2002, astro-ph/0205300.

[62]  R. Makidon,et al.  The Early Angular Momentum History of Low-Mass Stars: Evidence for a Regulation Mechanism , 2002, astro-ph/0203384.

[63]  L. Hillenbrand,et al.  Circumstellar Disk Candidates Identified in NGC 2264 , 2002 .

[64]  A. M. Ghez,et al.  A High Angular Resolution Multiplicity Survey of the Open Clusters α Persei and Praesepe , 2001, astro-ph/0111156.

[65]  C. Bailer-Jones,et al.  The Mass Dependence of Stellar Rotation in the Orion Nebula Cluster , 2001, astro-ph/0104438.

[66]  M. Skrutskie,et al.  Near-Infrared Photometric Variability of Stars toward the Orion A Molecular Cloud , 2001, astro-ph/0102446.

[67]  M. Pinsonneault,et al.  The Angular Momentum Evolution of Very Low Mass Stars , 2000, astro-ph/0001065.

[68]  M. Pinsonneault,et al.  Rotational Velocities of Low-Mass Stars in the Pleiades and Hyades , 1999, astro-ph/9911507.

[69]  M. Bessell,et al.  UBVI CCD photometry of M35 (NGC 2168) , 1999 .

[70]  F. M. Zerbi,et al.  γ Doradus Stars: Defining a New Class of Pulsating Variables , 1999, astro-ph/9905042.

[71]  J. Kirkpatrick,et al.  Keck Spectra of Pleiades Brown Dwarf Candidates and a Precise Determination of the Lithium Depletion Edge in the Pleiades , 1998, astro-ph/9804005.

[72]  M. Bessell,et al.  UBVRI H(alpha) Photometry of the Young Open Cluster NGC 2264 , 1997 .

[73]  A. Cameron,et al.  Magnetic braking of G and K dwarfs without core-envelope decoupling , 1994 .

[74]  M. Couture,et al.  HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope , 1994, Astronomical Telescopes and Instrumentation.

[75]  John R. Stauffer,et al.  ROSAT X-ray luminosity functions of the Hyades dK and dM stars , 1994 .

[76]  John R. Stauffer,et al.  The evolution of angular momentum among zero-age main-sequence solar-type stars , 1993 .

[77]  D. Soderblom,et al.  Rotation and chromospheric emission among F, G, and K dwarfs of the Pleiades , 1993 .

[78]  T. Bania,et al.  Radial Velocity Measurements in the Pleiades , 1991 .

[79]  A. Koenigl Disk accretion onto magnetic T Tauri stars , 1991 .

[80]  G. Lockwood,et al.  The activity, variability, and rotation of lower main-sequence Hyades stars , 1987 .

[81]  L. Hartmann,et al.  The distribution of rotational velocities for low-mass stars in the Pleiades , 1987 .

[82]  L. Cram,et al.  Model chromospheres of flare stars. I - Balmer-line profiles , 1979 .

[83]  P. Ghosh,et al.  Accretion by rotating magnetic neutron stars. III. Accretion torques and period changes in pulsating X-ray sources. , 1979 .

[84]  A. Skumanich,et al.  TIME SCALES FOR Ca II EMISSION DECAY, ROTATIONAL BRAKING, AND LITHIUM DEPLETION. , 1971 .

[85]  L. Davis,et al.  The angular momentum of the solar wind. , 1967 .

[86]  O. C. Wilson STELLAR CONVECTION ZONES, CHROMOSPHERES, AND ROTATION , 1966 .

[87]  R. P. Kraft,et al.  Studies of Stellar Rotation. III. a Redetermination of Rotational Velocities in the Pleiades , 1966 .

[88]  R. P. Kraft Studies of Steller Rotation. I. Comparison of Rotational Velocities in the Hyades and Coma Clusters. , 1965 .

[89]  K. Rice,et al.  Protostars and Planets V , 2005 .

[90]  W. Dziembowski Oscillations of giants and supergiants. , 1977 .

[91]  O. Struve,et al.  Spectroscopic astrophysics;: An assessment of the contributions of Otto Struve , 1970 .

[92]  R. P. Kraft STUDIES OF STELLAR ROTATION. IV. A COMPARISON OF ROTATIONAL VELOCITIES IN THE ALPHA PERSEI CLUSTER AND THE PLEIADES. , 1967 .

[93]  R. P. Kraft,et al.  STUDIES OF STELLAR ROTATION. V. THE DEPENDENCE OF ROTATION ON AGE AMONG SOLAR-TYPE STARS. , 1967 .

[94]  R. P. Kraft Stellar Rotation and Stellar Evolution among Cepheids and Other Luminous Stars in the Hertzsprung Gap. , 1966 .

[95]  V. Mendoza,et al.  A Spectroscopic Study of the Pleiades. , 1956 .