Effects of Grazer Presence on Genetic Structure of a Phenotypically Diverse Diatom Population

[1]  J. J. Gilbert The cost of predator-induced morphological defense in rotifers: experimental studies and synthesis , 2013 .

[2]  U. John,et al.  Patterns of Post-Glacial Genetic Differentiation in Marginal Populations of a Marine Microalga , 2012, PloS one.

[3]  W. Mooij,et al.  GENOTYPE‐BY‐TEMPERATURE INTERACTIONS MAY HELP TO MAINTAIN CLONAL DIVERSITY IN ASTERIONELLA FORMOSA (BACILLARIOPHYCEAE) , 2012, Journal of phycology.

[4]  A. Godhe,et al.  Genetic Diversity and Ecosystem Functioning in the Face of Multiple Stressors , 2012, PloS one.

[5]  A. Kremp,et al.  Copepod reproductive success in spring-bloom communities with modified diatom and dinoflagellate dominance , 2012 .

[6]  U. Riebesell,et al.  Adaptive evolution of a key phytoplankton species to ocean acidification , 2012 .

[7]  G. Pohnert,et al.  Diatom Derived Polyunsaturated Aldehydes Do Not Structure the Planktonic Microbial Community in a Mesocosm Study , 2012, Marine drugs.

[8]  E. Selander,et al.  Grazer‐induced chain length plasticity reduces grazing risk in a marine diatom , 2012 .

[9]  O. Savchuk,et al.  Evaluation of biogeochemical cycles in an ensemble of three state-of-the-art numerical models of the Baltic Sea , 2011 .

[10]  A. Kremp,et al.  The toxic dinoflagellate Alexandrium ostenfeldii promotes incapacitation of the calanoid copepods Eurytemora affinis and Acartia bifilosa from the northern Baltic Sea , 2011 .

[11]  C. Vidoudez,et al.  Strain-related physiological and behavioral effects of Skeletonema marinoi on three common planktonic copepods , 2011, Marine biology.

[12]  E. Selander,et al.  Grazer cues induce stealth behavior in marine dinoflagellates , 2011, Proceedings of the National Academy of Sciences.

[13]  A. Godhe,et al.  Linking the planktonic and benthic habitat: genetic structure of the marine diatom Skeletonema marinoi , 2010, Molecular ecology.

[14]  J. Clobert,et al.  Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2011 – 30 November 2011 , 2012, Molecular ecology resources.

[15]  A. Ianora,et al.  Toxigenic effects of diatoms on grazers, phytoplankton and other microbes: a review , 2010, Ecotoxicology.

[16]  K. V. Subbarao,et al.  Permanent Genetic Resources added to Molecular Ecology Resources Database 1 May 2009–31 July 2009 , 2009, Molecular ecology resources.

[17]  A. Cembella,et al.  Intra-population clonal variability in allelochemical potency of the toxigenic dinoflagellate Alexandrium tamarense , 2009 .

[18]  U. Sommer Copepod growth and diatoms: insensitivity of Acartia tonsa to the composition of semi-natural plankton mixtures manipulated by silicon:nitrogen ratios in mesocosms , 2009, Oecologia.

[19]  G. Pohnert,et al.  Growth phase-specific release of polyunsaturated aldehydes by the diatom Skeletonema marinoi , 2008 .

[20]  N. Wasmund,et al.  100-years-changes in the phytoplankton community of Kiel Bight (Baltic Sea) , 2008 .

[21]  Mark Vellend,et al.  Ecological consequences of genetic diversity. , 2008, Ecology letters.

[22]  M. L. La Rotonda,et al.  Aldehyde-encapsulating liposomes impair marine grazer survivorship , 2008, Journal of Experimental Biology.

[23]  Adriana Zingone,et al.  Global diversity and biogeography of Skeletonema species (bacillariophyta). , 2008, Protist.

[24]  A. Boulesteix,et al.  Influence of diatoms on copepod reproduction. II. Uncorrelated effects of diatom-derived alpha,beta,gamma,delta-unsaturated aldehydes and polyunsaturated fatty acids on Calanus helgolandicus in the field , 2008 .

[25]  R. Casotti,et al.  Growth inhibition of cultured marine phytoplankton by toxic algal-derived polyunsaturated aldehydes. , 2007, Aquatic toxicology.

[26]  Lara Souza,et al.  Intraspecific diversity and dominant genotypes resist plant invasions. , 2007, Ecology letters.

[27]  Thomas Wichard,et al.  Lipid and Fatty Acid Composition of Diatoms Revisited: Rapid Wound‐Activated Change of Food Quality Parameters Influences Herbivorous Copepod Reproductive Success , 2007, Chembiochem : a European journal of chemical biology.

[28]  M. Hay,et al.  Chemical cues induce consumer-specific defenses in a bloom-forming marine phytoplankton , 2007, Proceedings of the National Academy of Sciences.

[29]  Rebecca L. Taylor,et al.  Short-term impacts of polyunsaturated aldehyde-producing diatoms on the harpacticoid copepod, Tisbe holothuriae , 2007 .

[30]  M. Koski High reproduction of Calanus finmarchicus during a diatom-dominated spring bloom , 2007 .

[31]  D. Sarno,et al.  DIVERSITY IN THE GENUS SKELETONEMA (BACILLARIOPHYCEAE): III. PHYLOGENETIC POSITION AND MORPHOLOGICAL VARIABILITY OF SKELETONEMA COSTATUM AND SKELETONEMA GREVILLEI, WITH THE DESCRIPTION OF SKELETONEMA ARDENS SP. NOV. 1 , 2007 .

[32]  E. Lessard,et al.  Copepod feeding selectivity on microplankton, including the toxigenic diatoms Pseudo-nitzschia spp., in the coastal Pacific Northwest , 2006 .

[33]  D. Sarno,et al.  Annual cycle of early developmental stage survival and recruitment in the copepods Temora stylifera and Centropages typicus , 2006 .

[34]  Thomas Wichard,et al.  Influence of diatoms on copepod reproduction. I. Field and laboratory observations related to Calanus helgolandicus egg production , 2006 .

[35]  D. Harbour,et al.  Effect of food composition on egg production and hatching success rate of two copepod species (Calanoides carinatus and Rhincalanus nasutus) in the Benguela upwelling system , 2005 .

[36]  Georg Pohnert,et al.  Diatom/Copepod Interactions in Plankton: The Indirect Chemical Defense of Unicellular Algae , 2005, Chembiochem : a European journal of chemical biology.

[37]  K. Hughes,et al.  Perceptual Processes and the Maintenance of Polymorphism Through Frequency-dependent Predation , 2005, Evolutionary Ecology.

[38]  Dongyan Liu,et al.  Survey of the Chemical Defence Potential of Diatoms: Screening of Fifty Species for α,β,γ,δ-unsaturated aldehydes , 2005, Journal of Chemical Ecology.

[39]  Boris Worm,et al.  Ecosystem recovery after climatic extremes enhanced by genotypic diversity. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  K. Garrett,et al.  Competition, facilitation, and niche differentiation in two foliar pathogens , 2005, Oecologia.

[41]  D. Bolnick,et al.  SCARED TO DEATH? THE EFFECTS OF INTIMIDATION AND CONSUMPTION IN PREDATOR–PREY INTERACTIONS , 2005 .

[42]  Thomas Wichard,et al.  Determination and quantification of alpha,beta,gamma,delta-unsaturated aldehydes as pentafluorobenzyl-oxime derivates in diatom cultures and natural phytoplankton populations: application in marine field studies. , 2005, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[43]  U. Larsson,et al.  Vertical distribution and settling of spring phytoplankton in the offshore NW Baltic Sea proper , 2004 .

[44]  V. Smetácek,et al.  Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom , 2004, Nature.

[45]  S. Ellner,et al.  Rapid evolution drives ecological dynamics in a predator–prey system , 2003, Nature.

[46]  D. Mann,et al.  PHYLOGENETIC POSITION OF TOXARIUM, A PENNATE‐LIKE LINEAGE WITHIN CENTRIC DIATOMS (BACILLARIOPHYCEAE) 1 , 2003 .

[47]  G. Pohnert,et al.  Are volatile unsaturated aldehydes from diatoms the main line of chemical defence against copepods , 2002 .

[48]  K. Jürgens,et al.  Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria , 2002, Antonie van Leeuwenhoek.

[49]  J Norberg,et al.  Phenotypic diversity and ecosystem functioning in changing environments: A theoretical framework , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[50]  M. Höfle,et al.  Grazing of protozoa and its effect on populations of aquatic bacteria. , 2001, FEMS microbiology ecology.

[51]  T. Rynearson,et al.  DNA fingerprinting reveals extensive genetic diversity in a field population of the centric diatom Ditylum brightwellii , 2000 .

[52]  T. Thingstad Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems , 2000 .

[53]  Ravinder Kumar Kohli,et al.  Autotoxicity: Concept, Organisms, and Ecological Significance , 1999 .

[54]  M. Lürling GRAZER‐INDUCED COENOBIAL FORMATION IN CLONAL CULTURES OF SCENENDESMUS OBLIQUUS (CHLOROCOCCALES, CHLOROPHYCEAE) , 1999 .

[55]  K. T. Kiss,et al.  Ecological observations on Skeletonema potamos (Weber) Hasle in the River Danube, near Budapest (1991–92, daily investigations) , 1994, Hydrobiologia.

[56]  Ikeda Tsutomu,et al.  Methods in Marine Zooplankton Ecology , 1992 .

[57]  G. Bell THE ECOLOGY AND GENETICS OF FITNESS IN CHLAMYDOMONAS. IV. THE PROPERTIES OF MIXTURES OF GENOTYPES OF THE SAME SPECIES , 1991, Evolution; international journal of organic evolution.

[58]  J. Runge Should we expect a relationship between primary production and fisheries? The role of copepod dynamics as a filter of trophic variability , 1988, Hydrobiologia.

[59]  L. Crowder,et al.  Predation: direct and indirect impacts on aquatic communities , 1988 .

[60]  W. M. Lewis Evolutionary Interpretations of Allelochemical Interactions in Phytoplankton Algae , 1986, The American Naturalist.

[61]  U. Brockmann,et al.  Parallel plastic tank experiments with cultures of marine diatoms , 1977, Helgoländer wissenschaftliche Meeresuntersuchungen.

[62]  D. Werner,et al.  Silica and temperature dependent colony size of Bellerochea maleus f. biangulata* (Centrales, Diatomeae) , 1976 .

[63]  B. Frost EFFECTS OF SIZE AND CONCENTRATION OF FOOD PARTICLES ON THE FEEDING BEHAVIOR OF THE MARINE PLANKTONIC COPEPOD CALANUS PACIFICUS1 , 1972 .

[64]  R. Amin Copepods in Skeletonema-dominated food webs : Toxicity and nutritional quality as factors controlling copepod-diatom interactions , 2011 .

[65]  Paul G. Falkowski,et al.  Evolution of primary producers in the sea , 2007 .

[66]  A. Wood,et al.  Measuring Growth Rates in Microalgal Cultures , 2005 .

[67]  R. Andersen,et al.  Algal culturing techniques , 2005 .

[68]  Dongyan Liu,et al.  Survey of the chemical defence potential of diatoms: screening of fifty one species for alpha,beta,gamma,delta-unsaturated aldehydes. , 2005, Journal of chemical ecology.

[69]  U. Larsson,et al.  Annual variability in ciliate community structure, potential prey and predators in the open northern Baltic Sea proper , 2004 .

[70]  H. Jakobsen,et al.  Effects of protozoan grazing on colony formation in Phaeocystis globosa (Prymnesiophyceae) and the potential costs and benefits , 2002 .

[71]  Roger Harris,et al.  ICES zooplankton methodology manual , 2000 .

[72]  I. K. Rivier The predatory Cladocera (Onychopoda: Podonidae, Polyphemidae, Cercopagidae) and Leptodorida of the World. , 1998 .

[73]  M. Lynch,et al.  Genetics and Analysis of Quantitative Traits , 1996 .

[74]  H. Cyr,et al.  Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems , 1993, Nature.

[75]  D. O. Hessen,et al.  Morphological changes in Scenedesmus induced by substances released from Daphnia , 1993 .

[76]  L. Legendre,et al.  The significance of microalgal blooms for fisheries and for the export of particulate organic carbon in oceans , 1990 .

[77]  池田 勉,et al.  Methods in marine zooplankton ecology , 1984 .

[78]  J. C. Goldman Physiological Processes, Nutrient Availability, and the Concept of Relative Growth Rate in Marine Phytoplankton Ecology , 1980 .

[79]  R. Guillard,et al.  Culture of Phytoplankton for Feeding Marine Invertebrates , 1975 .

[80]  W. Smith,et al.  Culture of Marine Invertebrate Animals , 1975, Springer US.

[81]  B. Mr EFFECTS OF SIZE AND CONCENTRATION OF FOOD PARTICLES ON THE FEEDING BEHAVIOR OF THE MARINE PLANKTONIC COPEPOD CALANUS PACIFICUS , 1972 .

[82]  H. Utermöhl Zur Vervollkommnung der quantitativen Phytoplankton-Methodik , 1958 .