The interacting-particle algorithm with dynamic heating and cooling

We consider an interacting-particle algorithm which is population-based like genetic algorithms and also has a temperature parameter analogous to simulated annealing. The temperature parameter of the interacting-particle algorithm has to cool down to zero in order to achieve convergence towards global optima. The way this temperature parameter is tuned affects the performance of the search process and we implement a meta-control methodology that adapts the temperature to the observed state of the samplings. The main idea is to solve an optimal control problem where the heating/cooling rate of the temperature parameter is the control variable. The criterion of the optimal control problem consists of user defined performance measures for the probability density function of the particles’ locations including expected objective function value of the particles and the spread of the particles’ locations. Our numerical results indicate that with this control methodology the temperature fluctuates (both heating and cooling) during the progress of the algorithm to meet our performance measures. In addition our numerical comparison of the meta-control methodology with classical cooling schedules demonstrate the benefits in employing the meta-control methodology.

[1]  Sanjoy K. Mitter,et al.  Successive approximation methods for the solution of optimal control problems , 1966, Autom..

[2]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[3]  Zelda B. Zabinsky,et al.  Multi-particle Simulated Annealing , 2007 .

[4]  László Lovász,et al.  Hit-and-run mixes fast , 1999, Math. Program..

[5]  Yuan Xu,et al.  Orthogonal Polynomials of Several Variables: Subject index , 2001 .

[6]  Yuan Xu,et al.  Orthogonal Polynomials of Several Variables: Preface , 2001 .

[7]  Robert L. Smith,et al.  Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions , 1984, Oper. Res..

[8]  David W. Scott,et al.  Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[9]  Patrick Siarry,et al.  A theoretical study on the behavior of simulated annealing leading to a new cooling schedule , 2005, Eur. J. Oper. Res..

[10]  T. Munakata,et al.  Temperature control for simulated annealing. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Frank Allgöwer,et al.  Nonlinear Model Predictive Control , 2007 .

[12]  Zelda B. Zabinsky,et al.  Stochastic Adaptive Search for Global Optimization , 2003 .

[13]  Michael Kolonko,et al.  Convergence of Simulated Annealing with Feedback Temperature Schedules , 1997, Probability in the Engineering and Informational Sciences.

[14]  Lester Ingber,et al.  Adaptive simulated annealing (ASA): Lessons learned , 2000, ArXiv.

[15]  Zelda B. Zabinsky,et al.  Optimization of Algorithmic Parameters using a Meta-Control Approach* , 2006, J. Glob. Optim..

[16]  Robert L. Smith,et al.  An analytically derived cooling schedule for simulated annealing , 2007, J. Glob. Optim..

[17]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[18]  Zelda B. Zabinsky,et al.  A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems , 2005, J. Glob. Optim..

[19]  W. Kohn,et al.  Meta-control of an interacting-particle algorithm for global optimization , 2010 .

[20]  P. D. Moral,et al.  Dynamiques recuites de type Feynman-Kac : résultats précis et conjectures , 2006 .

[21]  Lalit M. Patnaik,et al.  Genetic algorithms: a survey , 1994, Computer.

[22]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .

[23]  Yuan Xu,et al.  Orthogonal Polynomials of Several Variables , 2014, 1701.02709.

[24]  W. Sharpe The Sharpe Ratio , 1994 .

[25]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[26]  Raphaël Cerf,et al.  A NEW GENETIC ALGORITHM , 1996 .

[27]  Saeed Zolfaghari,et al.  Adaptive temperature control for simulated annealing: a comparative study , 2004, Comput. Oper. Res..