The interacting-particle algorithm with dynamic heating and cooling
暂无分享,去创建一个
[1] Sanjoy K. Mitter,et al. Successive approximation methods for the solution of optimal control problems , 1966, Autom..
[2] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[3] Zelda B. Zabinsky,et al. Multi-particle Simulated Annealing , 2007 .
[4] László Lovász,et al. Hit-and-run mixes fast , 1999, Math. Program..
[5] Yuan Xu,et al. Orthogonal Polynomials of Several Variables: Subject index , 2001 .
[6] Yuan Xu,et al. Orthogonal Polynomials of Several Variables: Preface , 2001 .
[7] Robert L. Smith,et al. Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions , 1984, Oper. Res..
[8] David W. Scott,et al. Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.
[9] Patrick Siarry,et al. A theoretical study on the behavior of simulated annealing leading to a new cooling schedule , 2005, Eur. J. Oper. Res..
[10] T. Munakata,et al. Temperature control for simulated annealing. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[11] Frank Allgöwer,et al. Nonlinear Model Predictive Control , 2007 .
[12] Zelda B. Zabinsky,et al. Stochastic Adaptive Search for Global Optimization , 2003 .
[13] Michael Kolonko,et al. Convergence of Simulated Annealing with Feedback Temperature Schedules , 1997, Probability in the Engineering and Informational Sciences.
[14] Lester Ingber,et al. Adaptive simulated annealing (ASA): Lessons learned , 2000, ArXiv.
[15] Zelda B. Zabinsky,et al. Optimization of Algorithmic Parameters using a Meta-Control Approach* , 2006, J. Glob. Optim..
[16] Robert L. Smith,et al. An analytically derived cooling schedule for simulated annealing , 2007, J. Glob. Optim..
[17] D. W. Scott,et al. Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .
[18] Zelda B. Zabinsky,et al. A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems , 2005, J. Glob. Optim..
[19] W. Kohn,et al. Meta-control of an interacting-particle algorithm for global optimization , 2010 .
[20] P. D. Moral,et al. Dynamiques recuites de type Feynman-Kac : résultats précis et conjectures , 2006 .
[21] Lalit M. Patnaik,et al. Genetic algorithms: a survey , 1994, Computer.
[22] P. Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .
[23] Yuan Xu,et al. Orthogonal Polynomials of Several Variables , 2014, 1701.02709.
[24] W. Sharpe. The Sharpe Ratio , 1994 .
[25] Dimitri P. Bertsekas,et al. Dynamic Programming and Optimal Control, Two Volume Set , 1995 .
[26] Raphaël Cerf,et al. A NEW GENETIC ALGORITHM , 1996 .
[27] Saeed Zolfaghari,et al. Adaptive temperature control for simulated annealing: a comparative study , 2004, Comput. Oper. Res..