ACADO toolkit—An open‐source framework for automatic control and dynamic optimization

In this paper the software environment and algorithm collection ACADO Toolkit is presented, which implements tools for automatic control and dynamic optimization. It provides a general framework for using a great variety of algorithms for direct optimal control, including model predictive control as well as state and parameter estimation. The ACADO Toolkit is implemented as a self-contained C++ code, while the object-oriented design allows for convenient coupling of existing optimization packages and for extending it with user-written optimization routines. We discuss details of the software design of the ACADO Toolkit 1.0 and describe its main software modules. Along with that we highlight a couple of algorithmic features, in particular its functionality to handle symbolic expressions. The user-friendly syntax of the ACADO Toolkit to set up optimization problems is illustrated with two tutorial examples: an optimal control and a parameter estimation problem. Copyright © 2010 John Wiley & Sons, Ltd.

[1]  Irene Bauer Numerische Verfahren zur Lösung von Anfangswertaufgaben und zur Generierung von ersten und zweiten Ableitungen mit Anwendungen bei Optimierungsaufgaben in Chemie und Verfahrenstechnik , 1999 .

[2]  L. Grüne,et al.  Nonlinear Model Predictive Control : Theory and Algorithms. 2nd Edition , 2011 .

[3]  Zoltan K. Nagy,et al.  Swelling Constrained Control of an Industrial Batch Reactor Using a Dedicated NMPC Environment: OptCon , 2009 .

[4]  CarleAlan,et al.  ADIFOR-Generating Derivative Codes from Fortran Programs , 1992 .

[5]  Frank Allgöwer,et al.  A Stabilizing Real-time Implementation of Nonlinear Model Predictive Control , 2007 .

[6]  M. J. D. Powell,et al.  A fast algorithm for nonlinearly constrained optimization calculations , 1978 .

[7]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[8]  M. Diehl,et al.  Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations , 2000 .

[9]  Moritz Diehl,et al.  Numerical methods for embedded optimisation and their implementation with the ACADO toolkit , 2009 .

[10]  Johannes P. Schlöder,et al.  An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part 1: theoretical aspects , 2003, Comput. Chem. Eng..

[11]  Brian C. Fabien,et al.  dsoa: The implementation of a dynamic system optimization algorithm , 2010 .

[12]  Moritz Diehl,et al.  Real-Time Optimization for Large Scale Nonlinear Processes , 2001 .

[13]  M. Diehl,et al.  Nominal stability of real-time iteration scheme for nonlinear model predictive control , 2005 .

[14]  Filip Logist,et al.  Fast Pareto set generation for nonlinear optimal control problems with multiple objectives , 2010 .

[15]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[16]  Andreas Griewank,et al.  Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in C/C++ , 1996, TOMS.

[17]  Stephen P. Boyd,et al.  Recent Advances in Learning and Control , 2008, Lecture Notes in Control and Information Sciences.

[18]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[19]  L. Biegler An overview of simultaneous strategies for dynamic optimization , 2007 .

[20]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[21]  Johannes P. Schlöder,et al.  An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization: Part II: Software aspects and applications , 2003, Comput. Chem. Eng..

[22]  Shih-Ping Han A globally convergent method for nonlinear programming , 1975 .