A Primer on Global Internal Tide and Internal Gravity Wave Continuum Modeling in HYCOM and MITgcm
暂无分享,去创建一个
E. Joseph Metzger | Dimitris Menemenlis | Christopher E. Henze | Innocent Souopgui | Alan J. Wallcraft | J. Thomas Farrar | Robert B. Scott | James G. Richman | Jay F. Shriver | Rui M. Ponte | R. Ciotti | D. Menemenlis | C. Henze | R. Hallberg | J. Farrar | H. Simmons | A. Wallcraft | E. Metzger | H. Ngodock | R. Ponte | C. Hill | Zhong‐Kuo Zhao | J. Richman | Joseph K. Ansong | B. Arbic | M. Alford | M. Buijsman | Patrick G. Timko | J. Shriver | R. Scott | Bron C. Nelson | Malte Müller | I. Souopgui | Matthew H. Alford | Brian K. Arbic | L. Zamudio | Robert W. Hallberg | Harper L. Simmons | Zhongxiang Zhao | Maarten C. Buijsman | Christopher N. Hill | Anna C. Savage | Luis Zamudio | Robert B. Ciotti | Conrad A. Luecke | Malte Müeller | Arin D. Nelson | Hans E. Ngodock | C. A. Luecke | A. D. Nelson | B. Robert | Ciotti | Christopher N. Hill | D. Arin | Nelson | C. Anna | Savage | Patrick | G. Timko | Robert B. Ciotti | Malte Müeller
[1] Daniel E. Frye,et al. A MOORED PROFILING INSTRUMENT , 1999 .
[2] R. Hallberg,et al. The accuracy of surface elevations in forward global barotropic and baroclinic tide models , 2004 .
[3] B. Arbic,et al. On the Resonance and Shelf/Open-Ocean Coupling of the Global Diurnal Tides , 2013 .
[4] Malte Müller,et al. The computation of the free barotropic oscillations of a global ocean model including friction and loading effects , 2005 .
[5] Florent Lyard,et al. Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing ‐ comparisons with observations , 2003 .
[6] J. Toole,et al. Seasonal Kinetic Energy Variability of Near-Inertial Motions , 2009 .
[7] C. Wunsch,et al. Atmospheric loading and the oceanic “inverted barometer” effect , 1997 .
[8] Zhong‐Kuo Zhao,et al. Long-Range Propagation of the Semidiurnal Internal Tide from the Hawaiian Ridge , 2010 .
[9] K. Lamb,et al. Focusing and vertical mode scattering of the first mode internal tide by mesoscale eddy interaction , 2014 .
[10] R. Ray. Ocean self‐attraction and loading in numerical tidal models , 1998 .
[11] G. D. Egbert,et al. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data , 2000, Nature.
[12] J. Nash,et al. Are any coastal internal tides predictable , 2012 .
[13] William J. Emery,et al. Data Analysis Methods in Physical Oceanography , 1998 .
[14] B. Qiu,et al. Submesoscale transition from geostrophic flows to internal waves in the northwestern Pacific upper ocean , 2017, Nature Communications.
[15] James G. Williams,et al. Secular tidal changes in lunar orbit and Earth rotation , 2016, Celestial Mechanics and Dynamical Astronomy.
[16] J. Sheng,et al. Observed and Simulated Energy Cycles in the Frequency Domain , 1990 .
[17] T. Hibiya,et al. Numerically reproduced internal wave spectra in the deep ocean , 2009 .
[18] L. Talley,et al. Spatial and temporal variability of global ocean mixing inferred from Argo profiles , 2012 .
[19] Richard D. Ray,et al. Oceanic tides from Geosat altimetry , 1990 .
[20] D. Farmer,et al. Structure and Generation of Turbulence at Interfaces Strained by Internal Solitary Waves Propagating Shoreward over the Continental Shelf , 2003 .
[21] S. Jayne,et al. Impact of parameterized lee wave drag on the energy budget of an eddying global ocean model , 2013 .
[22] R. J. Tayler,et al. New Computations of the Tide‐generating Potential , 2007 .
[23] L. S. Laurent,et al. Estimates of Power Consumed by Mixing in the Ocean Interior , 2006 .
[24] M. Maltrud,et al. Numerical simulation of the North Atlantic Ocean at 1/10 degrees , 2000 .
[25] A. E. Gill. Atmosphere-Ocean Dynamics , 1982 .
[26] J. Richman,et al. Energetics of a global ocean circulation model compared to observations , 2011 .
[27] R. Ray,et al. Barometric Tides from ECMWF Operational Analyses , 2003 .
[28] S. Jayne,et al. Impact of topographic internal lee wave drag on an eddying global ocean model , 2016 .
[29] M. Maltrud,et al. An eddy resolving global 1/10° ocean simulation , 2005 .
[30] R. Millard,et al. Comparison between observed and simulated wind-generated inertial oscillations , 1970 .
[31] H. Dobslaw,et al. Improved modeling of sea level patterns by incorporating self-attraction and loading , 2011 .
[32] Walter H. F. Smith,et al. The volume of earth's ocean , 2010 .
[33] T. Hibiya,et al. Model-predicted distribution of wind-induced internal wave energy in the world's oceans , 2008 .
[34] R. Scott,et al. Direct Evidence of an Oceanic Inverse Kinetic Energy Cascade from Satellite Altimetry , 2005 .
[35] A. Weaver,et al. Tidally driven mixing in a numerical model of the ocean general circulation , 2003 .
[36] Stephen M. Griffies,et al. Fundamentals of Ocean Climate Models , 2004 .
[37] Hiroyasu Hasumi,et al. Ocean modeling in an eddying regime , 2008 .
[38] Raffaele Ferrari,et al. Interpreting Energy and Tracer Spectra of Upper-Ocean Turbulence in the Submesoscale Range (1–200 km) , 2013 .
[39] Melinda S. Peng,et al. Navy Operational Global Atmospheric Prediction System (NOGAPS): Forcing for Ocean Models , 2002 .
[40] M. Alford,et al. Redistribution of energy available for ocean mixing by long-range propagation of internal waves , 2003, Nature.
[41] L. Talley,et al. Estimating the Mean Diapycnal Mixing Using a Finescale Strain Parameterization , 2015 .
[42] S. Gulev,et al. Exchanges Through the Ocean Surface , 2013 .
[43] Joseph Pedlosky,et al. Ocean Circulation Theory , 1996 .
[44] J. Lumley,et al. Air-Sea Interaction: Laws and Mechanisms , 2001 .
[45] J. Goff,et al. Internal tide generation by abyssal hills using analytical theory , 2013 .
[46] Carl Wunsch,et al. De‐aliasing of global high frequency barotropic motions in altimeter observations , 2000 .
[47] J. Goff,et al. Global prediction of abyssal hill roughness statistics for use in ocean models from digital maps of paleo-spreading rate, paleo-ridge orientation, and sediment thickness , 2010 .
[48] C. Pekeris,et al. Solution of the tidal equations for the M2 and S2 tides in the world oceans from a knowledge of the tidal potential alone , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[49] Glenn R. Flierl,et al. Models of vertical structure and the calibration of two-layer models , 1978 .
[50] Walter H. F. Smith,et al. Impact of synthetic abyssal hill roughness on resolved motions in numerical global ocean tide models , 2017 .
[51] L. S. Laurent,et al. The Role of Internal Tides in Mixing the Deep Ocean , 2002 .
[52] P. Baines. On internal tide generation models , 1982 .
[53] Eric P. Chassignet,et al. US GODAE: Global Ocean Prediction with the Hybrid Coordinate Ocean Model (HYCOM) , 2004 .
[54] J. Richman,et al. How stationary are the internal tides in a high‐resolution global ocean circulation model? , 2014 .
[55] Ernst J. O. Schrama,et al. A preliminary tidal analysis of TOPEX/POSEIDON altimetry , 1994 .
[56] L. Rainville,et al. Direct Breaking of the Internal Tide near Topography: Kaena Ridge, Hawaii , 2008 .
[57] M. Tamisiea,et al. Dynamic Adjustment of the Ocean Circulation to Self-Attraction and Loading Effects , 2015 .
[58] Gary D. Egbert,et al. Accuracy assessment of global barotropic ocean tide models , 2014 .
[59] Chris W. Hughes,et al. Parameterization of ocean self‐attraction and loading in numerical models of the ocean circulation , 2004 .
[60] J. McWilliams,et al. Stimulated Imbalance and the Enhancement of Eddy Kinetic Energy Dissipation by Internal Waves , 2017 .
[61] Tidal Friction in the Irish Sea , 1919 .
[62] A. Wallcraft,et al. Indirect evidence for substantial damping of low-mode internal tides in the open ocean , 2015 .
[63] L. Perelman,et al. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers , 1997 .
[64] P. Holloway,et al. The generation of internal tides at the Hawaiian Ridge , 2001 .
[65] C. Garrett. Tidal Resonance in the Bay of Fundy and Gulf of Maine , 1972, Nature.
[66] A. Wallcraft,et al. Toward an internal gravity wave spectrum in global ocean models , 2015 .
[67] A. Wallcraft,et al. Inferring dynamics from the wavenumber spectra of an eddying global ocean model with embedded tides , 2012 .
[68] M. G. G. Foreman,et al. Versatile Harmonic Tidal Analysis: Improvements and Applications , 2009 .
[69] B. Arbic. Atmospheric forcing of the oceanic semidiurnal tide , 2005 .
[70] Alan J. Wallcraft,et al. Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies , 2017 .
[71] D. Menemenlis,et al. Seasonality of submesoscale dynamics in the Kuroshio Extension , 2016 .
[72] J. LaCasce. Floats and f/H , 2000 .
[73] A. Wallcraft,et al. On Improving the Accuracy of the M-2 Barotropic Tides Embedded in a High-Resolution Global Ocean Circulation Model , 2016 .
[74] Rainer Bleck,et al. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates , 2002 .
[75] C. Wunsch. Bermuda sea level in relation to tides, weather, and baroclinic fluctuations , 1972 .
[76] H. Hasumi,et al. Developments in ocean climate modelling , 2000 .
[77] Malte Müller,et al. The effect of ocean tides on a climate model simulation , 2010 .
[78] J. Wahr,et al. A diurnal resonance in the ocean tide and in the Earth's load response due to the resonant free ‘core nutation’ , 1981 .
[79] A. T. Doodson. The Harmonic Development of the Tide-Generating Potential , 1921 .
[80] M. Gregg,et al. Scaling turbulent dissipation in the thermocline , 1989 .
[81] C. Garrett,et al. On the resonance and influence of the tides in Ungava Bay and Hudson Strait , 2007 .
[82] A. Wallcraft,et al. An evaluation of the barotropic and internal tides in a high‐resolution global ocean circulation model , 2012 .
[83] T. Hibiya,et al. Numerical study of the spatial distribution of the M2 internal tide in the Pacific Ocean , 2001 .
[84] M. Maltrud,et al. Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records , 2010 .
[85] M. Foreman. MANUAL FOR TIDAL HEIGHTS ANALYSIS AND PREDICTION , 2000 .
[86] G. Mitchum,et al. Surface manifestation of internal tides generated near Hawaii , 1996 .
[87] Robert B. Scott,et al. On Eddy Viscosity, Energy Cascades, and the Horizontal Resolution of Gridded Satellite Altimeter Products* , 2013 .
[88] R. Ray. Precise comparisons of bottom-pressure and altimetric ocean tides , 2014 .
[89] J. Sündermann,et al. Broad frequency tidal dynamics simulated by a high-resolution global ocean tide model forced by ephemerides , 2008 .
[90] Alan J. Wallcraft,et al. The Global Mesoscale Eddy Available Potential Energy Field in Models and Observations , 2017 .
[91] H. Simmons,et al. Semidiurnal internal tide energy fluxes and their variability in a Global Ocean Model and moored observations , 2017 .
[92] Robert Pinkel,et al. Global Patterns of Diapycnal Mixing from Measurements of the Turbulent Dissipation Rate , 2014 .
[93] O. Fringer,et al. Regional Models of Internal Tides , 2012 .
[94] C. Garrett,et al. A coupled oscillator model of shelf and ocean tides , 2010 .
[95] R. Ray,et al. Semi‐diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry , 2003 .
[96] J. Nash,et al. Estimating Internal Wave Energy Fluxes in the Ocean , 2005 .
[97] Robert Pinkel,et al. Internal waves across the Pacific , 2007 .
[98] P. Ailliot,et al. Lee wave generation rates in the deep ocean , 2014 .
[99] Raffaele Ferrari,et al. Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean , 2011 .
[100] J. Sheng,et al. Estimation of Atmospheric Energetics in the Frequency Domain during the FGGE Year , 1990 .
[101] T. H. Bell,et al. Lee waves in stratified flows with simple harmonic time dependence , 1975, Journal of Fluid Mechanics.
[102] B. Kagan,et al. The effects of loading and self - attraction on global ocean tides: the model and the results of a n , 1977 .
[103] Alan J. Wallcraft,et al. Global Modeling of Internal Tides Within an Eddying Ocean General Circulation Model , 2012 .
[104] H. Simmons,et al. Simulating the Long-Range Swell of Internal Waves Generated by Ocean Storms , 2012 .
[105] J. Cherniawsky,et al. Numerical Modeling of Internal Tide Generation along the Hawaiian Ridge , 2000 .
[106] Eric Kunze,et al. Internal-Wave-Driven Mixing: Global Geography and Budgets , 2017 .
[107] P. Gaspar,et al. Modelling explicit tides in the Indonesian seas: An important process for surface sea water properties. , 2017, Marine pollution bulletin.
[108] Alistair Adcroft,et al. A finite volume discretization of the pressure gradient force using analytic integration , 2008 .
[109] F. Roosbeek. RATGP95: a harmonic development of the tide-generating potential using an analytical method. , 1996 .
[110] J. McWilliams,et al. Mesoscale to Submesoscale Transition in the California Current System. Part I: Flow Structure, Eddy Flux, and Observational Tests , 2008 .
[111] Walter Munk,et al. The rotation of the earth , 1960 .
[112] E. W. Schwiderski,et al. On charting global ocean tides , 1980 .
[113] Dimitris Menemenlis,et al. Spectral decomposition of internal gravity wave sea surface height in global models , 2017 .
[114] John A. Goff,et al. Global prediction of abyssal hill root‐mean‐square heights from small‐scale altimetric gravity variability , 2010 .
[115] P. Holloway. A Numerical Model of Internal Tides with Application to the Australian North West Shelf , 1996 .
[116] J. Nash,et al. The geography of semidiurnal mode‐1 internal‐tide energy loss , 2013 .
[117] G. Egbert,et al. Efficient Inverse Modeling of Barotropic Ocean Tides , 2002 .
[118] M. Hendershott,et al. The Effects of Solid Earth Deformation on Global Ocean Tides , 1972 .
[119] S. Garner. A Topographic Drag Closure Built on an Analytical Base Flux , 2005 .
[120] B. Arbic,et al. The semi‐diurnal tide in Hudson strait as a resonant channel oscillation , 2008 .
[121] E. D’Asaro. The Energy Flux from the Wind to Near-Inertial Motions in the Surface Mixed Layer , 1985 .
[122] E. Chassignet,et al. Impact of Horizontal Resolution (1/12° to 1/50°) on Gulf Stream Separation, Penetration, and Variability , 2017 .
[123] A. Wallcraft,et al. Semidiurnal internal tide incoherence in the equatorial Pacific , 2017 .
[124] Dimitris Menemenlis,et al. An Observing System Simulation Experiment for the Calibration and Validation of the Surface Water Ocean Topography Sea Surface Height Measurement Using In Situ Platforms , 2017 .
[125] R. Fiedler,et al. Explicit tidal forcing in an ocean general circulation model , 2007 .
[126] A. Wallcraft,et al. Skill testing a three‐dimensional global tide model to historical current meter records , 2013 .
[127] Dimitris Menemenlis,et al. Mesoscale to submesoscale wavenumber spectra in Drake Passage , 2016 .
[128] G. O. Williams,et al. Internal wave observations from a midwater float, 2 , 1976 .
[129] Gary D. Egbert,et al. Estimates of M2 Tidal Energy Dissipation from TOPEX/Poseidon Altimeter Data , 2001 .
[130] E. Kunze. The Internal-Wave-Driven Meridional Overturning Circulation , 2017 .
[131] E. Zaron. Mapping the Nonstationary Internal Tide with Satellite Altimetry , 2017 .
[132] Michael T. Chandler,et al. The spatial and temporal distribution of marine geophysical surveys , 2011 .
[133] D. Stammer,et al. Inferring deep ocean tidal energy dissipation from the global high‐resolution data‐assimilative HAMTIDE model , 2014 .
[134] Chris Garrett,et al. Space-Time Scales of Internal Waves' A Progress Report , 1975 .
[135] D. Cartwright. A subharmonic lunar tide in the seas off Western Europe , 1975, Nature.
[136] Bruce M. Howe,et al. Barotropic and Baroclinic Tides in the Central North Pacific Ocean Determined from Long-Range Reciprocal Acoustic Transmissions , 1995 .
[137] Yongsheng Xu,et al. The Effects of Altimeter Instrument Noise on the Estimation of the Wavenumber Spectrum of Sea Surface Height , 2012 .
[138] G. Flierl,et al. Nonlinear Cascades of Surface Oceanic Geostrophic Kinetic Energy in the Frequency Domain , 2012 .
[139] Chris Garrett,et al. Predicting Changes in Tidal Regime: The Open Boundary Problem , 1977 .
[140] D. Cartwright,et al. Tides: A Scientific History , 1999 .
[141] L. St. Laurent,et al. Parameterizing tidal dissipation over rough topography , 2001 .
[142] R. A. Heath. Estimates of the resonant period and Q in the semi-diurnal tidal band in the North Atlantic and Pacific Oceans , 1981 .
[143] Alan J. Wallcraft,et al. Impact of Parameterized Internal Wave Drag on the Semidiurnal Energy Balance in a Global Ocean Circulation Model , 2016 .
[144] Richard D. Ray,et al. A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2 , 1999 .
[145] C. Wunsch. Internal tides in the ocean , 1975 .
[146] Patrick F. Cummins,et al. Simulation of Barotropic and Baroclinic Tides off Northern British Columbia , 1997 .
[147] Ayon Sen,et al. Zonal versus meridional velocity variance in satellite observations and realistic and idealized ocean circulation models , 2008 .
[148] R. Ray,et al. Tides and Satellite Altimetry , 2017 .
[149] K. Polzin,et al. Finescale Parameterizations of Turbulent Dissipation , 1995 .
[150] C. Garrett,et al. On tidal resonance in the global ocean and the back‐effect of coastal tides upon open‐ocean tides , 2009 .
[151] J. Richman,et al. Geostrophic Turbulence in the Frequency–Wavenumber Domain: Eddy-Driven Low-Frequency Variability* , 2014 .
[152] Gary D. Egbert,et al. Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum , 2004 .
[153] A. Bennett,et al. TOPEX/POSEIDON tides estimated using a global inverse model , 1994 .
[154] B. Arbic,et al. Spectral Energy Fluxes in Geostrophic Turbulence: Implications for Ocean Energetics , 2007 .
[155] E. Joseph Metzger,et al. Concurrent Simulation of the Eddying General Circulation and Tides in a Global Ocean Model , 2010 .
[156] R. Hallberg,et al. Internal wave generation in a global baroclinic tide model , 2004 .
[157] W. Munk,et al. Abyssal recipes II: energetics of tidal and wind mixing , 1998 .
[158] R. Coleman. Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications , 2001 .
[159] E. D’Asaro. Wind Forced Internal Waves in the North Pacific and Sargasso Sea , 1984 .
[160] R. Helber,et al. Optimizing Internal Wave Drag in a Forward Barotropic Model with Semidiurnal Tides , 2015 .
[161] M. Müller. The free oscillations of the world ocean in the period range 8 to 165 hours including the full loading effect , 2007 .
[162] R. Hallberg. A thermobaric instability of Lagrangian vertical coordinate ocean models , 2005 .