A Primer on Global Internal Tide and Internal Gravity Wave Continuum Modeling in HYCOM and MITgcm

Brian K. Arbic1,2, Matthew H. Alford3, Joseph K. Ansong1,4, Maarten C. Buijsman5, Robert B. Ciotti6, J. Thomas Farrar7, Robert W. Hallberg8, Christopher E. Henze6, Christopher N. Hill9, Conrad A. Luecke1,3, Dimitris Menemenlis10, E. Joseph Metzger11, Malte Müller12, Arin D. Nelson1, Bron C. Nelson6, Hans E. Ngodock11, Rui M. Ponte13, James G. Richman14, Anna C. Savage1,3, Robert B. Scott15, Jay F. Shriver11, Harper L. Simmons16, Innocent Souopgui5, Patrick G. Timko1,+, Alan J. Wallcraft14, Luis Zamudio14, and Zhongxiang Zhao17

[1]  Daniel E. Frye,et al.  A MOORED PROFILING INSTRUMENT , 1999 .

[2]  R. Hallberg,et al.  The accuracy of surface elevations in forward global barotropic and baroclinic tide models , 2004 .

[3]  B. Arbic,et al.  On the Resonance and Shelf/Open-Ocean Coupling of the Global Diurnal Tides , 2013 .

[4]  Malte Müller,et al.  The computation of the free barotropic oscillations of a global ocean model including friction and loading effects , 2005 .

[5]  Florent Lyard,et al.  Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing ‐ comparisons with observations , 2003 .

[6]  J. Toole,et al.  Seasonal Kinetic Energy Variability of Near-Inertial Motions , 2009 .

[7]  C. Wunsch,et al.  Atmospheric loading and the oceanic “inverted barometer” effect , 1997 .

[8]  Zhong‐Kuo Zhao,et al.  Long-Range Propagation of the Semidiurnal Internal Tide from the Hawaiian Ridge , 2010 .

[9]  K. Lamb,et al.  Focusing and vertical mode scattering of the first mode internal tide by mesoscale eddy interaction , 2014 .

[10]  R. Ray Ocean self‐attraction and loading in numerical tidal models , 1998 .

[11]  G. D. Egbert,et al.  Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data , 2000, Nature.

[12]  J. Nash,et al.  Are any coastal internal tides predictable , 2012 .

[13]  William J. Emery,et al.  Data Analysis Methods in Physical Oceanography , 1998 .

[14]  B. Qiu,et al.  Submesoscale transition from geostrophic flows to internal waves in the northwestern Pacific upper ocean , 2017, Nature Communications.

[15]  James G. Williams,et al.  Secular tidal changes in lunar orbit and Earth rotation , 2016, Celestial Mechanics and Dynamical Astronomy.

[16]  J. Sheng,et al.  Observed and Simulated Energy Cycles in the Frequency Domain , 1990 .

[17]  T. Hibiya,et al.  Numerically reproduced internal wave spectra in the deep ocean , 2009 .

[18]  L. Talley,et al.  Spatial and temporal variability of global ocean mixing inferred from Argo profiles , 2012 .

[19]  Richard D. Ray,et al.  Oceanic tides from Geosat altimetry , 1990 .

[20]  D. Farmer,et al.  Structure and Generation of Turbulence at Interfaces Strained by Internal Solitary Waves Propagating Shoreward over the Continental Shelf , 2003 .

[21]  S. Jayne,et al.  Impact of parameterized lee wave drag on the energy budget of an eddying global ocean model , 2013 .

[22]  R. J. Tayler,et al.  New Computations of the Tide‐generating Potential , 2007 .

[23]  L. S. Laurent,et al.  Estimates of Power Consumed by Mixing in the Ocean Interior , 2006 .

[24]  M. Maltrud,et al.  Numerical simulation of the North Atlantic Ocean at 1/10 degrees , 2000 .

[25]  A. E. Gill Atmosphere-Ocean Dynamics , 1982 .

[26]  J. Richman,et al.  Energetics of a global ocean circulation model compared to observations , 2011 .

[27]  R. Ray,et al.  Barometric Tides from ECMWF Operational Analyses , 2003 .

[28]  S. Jayne,et al.  Impact of topographic internal lee wave drag on an eddying global ocean model , 2016 .

[29]  M. Maltrud,et al.  An eddy resolving global 1/10° ocean simulation , 2005 .

[30]  R. Millard,et al.  Comparison between observed and simulated wind-generated inertial oscillations , 1970 .

[31]  H. Dobslaw,et al.  Improved modeling of sea level patterns by incorporating self-attraction and loading , 2011 .

[32]  Walter H. F. Smith,et al.  The volume of earth's ocean , 2010 .

[33]  T. Hibiya,et al.  Model-predicted distribution of wind-induced internal wave energy in the world's oceans , 2008 .

[34]  R. Scott,et al.  Direct Evidence of an Oceanic Inverse Kinetic Energy Cascade from Satellite Altimetry , 2005 .

[35]  A. Weaver,et al.  Tidally driven mixing in a numerical model of the ocean general circulation , 2003 .

[36]  Stephen M. Griffies,et al.  Fundamentals of Ocean Climate Models , 2004 .

[37]  Hiroyasu Hasumi,et al.  Ocean modeling in an eddying regime , 2008 .

[38]  Raffaele Ferrari,et al.  Interpreting Energy and Tracer Spectra of Upper-Ocean Turbulence in the Submesoscale Range (1–200 km) , 2013 .

[39]  Melinda S. Peng,et al.  Navy Operational Global Atmospheric Prediction System (NOGAPS): Forcing for Ocean Models , 2002 .

[40]  M. Alford,et al.  Redistribution of energy available for ocean mixing by long-range propagation of internal waves , 2003, Nature.

[41]  L. Talley,et al.  Estimating the Mean Diapycnal Mixing Using a Finescale Strain Parameterization , 2015 .

[42]  S. Gulev,et al.  Exchanges Through the Ocean Surface , 2013 .

[43]  Joseph Pedlosky,et al.  Ocean Circulation Theory , 1996 .

[44]  J. Lumley,et al.  Air-Sea Interaction: Laws and Mechanisms , 2001 .

[45]  J. Goff,et al.  Internal tide generation by abyssal hills using analytical theory , 2013 .

[46]  Carl Wunsch,et al.  De‐aliasing of global high frequency barotropic motions in altimeter observations , 2000 .

[47]  J. Goff,et al.  Global prediction of abyssal hill roughness statistics for use in ocean models from digital maps of paleo-spreading rate, paleo-ridge orientation, and sediment thickness , 2010 .

[48]  C. Pekeris,et al.  Solution of the tidal equations for the M2 and S2 tides in the world oceans from a knowledge of the tidal potential alone , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[49]  Glenn R. Flierl,et al.  Models of vertical structure and the calibration of two-layer models , 1978 .

[50]  Walter H. F. Smith,et al.  Impact of synthetic abyssal hill roughness on resolved motions in numerical global ocean tide models , 2017 .

[51]  L. S. Laurent,et al.  The Role of Internal Tides in Mixing the Deep Ocean , 2002 .

[52]  P. Baines On internal tide generation models , 1982 .

[53]  Eric P. Chassignet,et al.  US GODAE: Global Ocean Prediction with the Hybrid Coordinate Ocean Model (HYCOM) , 2004 .

[54]  J. Richman,et al.  How stationary are the internal tides in a high‐resolution global ocean circulation model? , 2014 .

[55]  Ernst J. O. Schrama,et al.  A preliminary tidal analysis of TOPEX/POSEIDON altimetry , 1994 .

[56]  L. Rainville,et al.  Direct Breaking of the Internal Tide near Topography: Kaena Ridge, Hawaii , 2008 .

[57]  M. Tamisiea,et al.  Dynamic Adjustment of the Ocean Circulation to Self-Attraction and Loading Effects , 2015 .

[58]  Gary D. Egbert,et al.  Accuracy assessment of global barotropic ocean tide models , 2014 .

[59]  Chris W. Hughes,et al.  Parameterization of ocean self‐attraction and loading in numerical models of the ocean circulation , 2004 .

[60]  J. McWilliams,et al.  Stimulated Imbalance and the Enhancement of Eddy Kinetic Energy Dissipation by Internal Waves , 2017 .

[61]  Tidal Friction in the Irish Sea , 1919 .

[62]  A. Wallcraft,et al.  Indirect evidence for substantial damping of low-mode internal tides in the open ocean , 2015 .

[63]  L. Perelman,et al.  A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers , 1997 .

[64]  P. Holloway,et al.  The generation of internal tides at the Hawaiian Ridge , 2001 .

[65]  C. Garrett Tidal Resonance in the Bay of Fundy and Gulf of Maine , 1972, Nature.

[66]  A. Wallcraft,et al.  Toward an internal gravity wave spectrum in global ocean models , 2015 .

[67]  A. Wallcraft,et al.  Inferring dynamics from the wavenumber spectra of an eddying global ocean model with embedded tides , 2012 .

[68]  M. G. G. Foreman,et al.  Versatile Harmonic Tidal Analysis: Improvements and Applications , 2009 .

[69]  B. Arbic Atmospheric forcing of the oceanic semidiurnal tide , 2005 .

[70]  Alan J. Wallcraft,et al.  Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies , 2017 .

[71]  D. Menemenlis,et al.  Seasonality of submesoscale dynamics in the Kuroshio Extension , 2016 .

[72]  J. LaCasce Floats and f/H , 2000 .

[73]  A. Wallcraft,et al.  On Improving the Accuracy of the M-2 Barotropic Tides Embedded in a High-Resolution Global Ocean Circulation Model , 2016 .

[74]  Rainer Bleck,et al.  An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates , 2002 .

[75]  C. Wunsch Bermuda sea level in relation to tides, weather, and baroclinic fluctuations , 1972 .

[76]  H. Hasumi,et al.  Developments in ocean climate modelling , 2000 .

[77]  Malte Müller,et al.  The effect of ocean tides on a climate model simulation , 2010 .

[78]  J. Wahr,et al.  A diurnal resonance in the ocean tide and in the Earth's load response due to the resonant free ‘core nutation’ , 1981 .

[79]  A. T. Doodson The Harmonic Development of the Tide-Generating Potential , 1921 .

[80]  M. Gregg,et al.  Scaling turbulent dissipation in the thermocline , 1989 .

[81]  C. Garrett,et al.  On the resonance and influence of the tides in Ungava Bay and Hudson Strait , 2007 .

[82]  A. Wallcraft,et al.  An evaluation of the barotropic and internal tides in a high‐resolution global ocean circulation model , 2012 .

[83]  T. Hibiya,et al.  Numerical study of the spatial distribution of the M2 internal tide in the Pacific Ocean , 2001 .

[84]  M. Maltrud,et al.  Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records , 2010 .

[85]  M. Foreman MANUAL FOR TIDAL HEIGHTS ANALYSIS AND PREDICTION , 2000 .

[86]  G. Mitchum,et al.  Surface manifestation of internal tides generated near Hawaii , 1996 .

[87]  Robert B. Scott,et al.  On Eddy Viscosity, Energy Cascades, and the Horizontal Resolution of Gridded Satellite Altimeter Products* , 2013 .

[88]  R. Ray Precise comparisons of bottom-pressure and altimetric ocean tides , 2014 .

[89]  J. Sündermann,et al.  Broad frequency tidal dynamics simulated by a high-resolution global ocean tide model forced by ephemerides , 2008 .

[90]  Alan J. Wallcraft,et al.  The Global Mesoscale Eddy Available Potential Energy Field in Models and Observations , 2017 .

[91]  H. Simmons,et al.  Semidiurnal internal tide energy fluxes and their variability in a Global Ocean Model and moored observations , 2017 .

[92]  Robert Pinkel,et al.  Global Patterns of Diapycnal Mixing from Measurements of the Turbulent Dissipation Rate , 2014 .

[93]  O. Fringer,et al.  Regional Models of Internal Tides , 2012 .

[94]  C. Garrett,et al.  A coupled oscillator model of shelf and ocean tides , 2010 .

[95]  R. Ray,et al.  Semi‐diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry , 2003 .

[96]  J. Nash,et al.  Estimating Internal Wave Energy Fluxes in the Ocean , 2005 .

[97]  Robert Pinkel,et al.  Internal waves across the Pacific , 2007 .

[98]  P. Ailliot,et al.  Lee wave generation rates in the deep ocean , 2014 .

[99]  Raffaele Ferrari,et al.  Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean , 2011 .

[100]  J. Sheng,et al.  Estimation of Atmospheric Energetics in the Frequency Domain during the FGGE Year , 1990 .

[101]  T. H. Bell,et al.  Lee waves in stratified flows with simple harmonic time dependence , 1975, Journal of Fluid Mechanics.

[102]  B. Kagan,et al.  The effects of loading and self - attraction on global ocean tides: the model and the results of a n , 1977 .

[103]  Alan J. Wallcraft,et al.  Global Modeling of Internal Tides Within an Eddying Ocean General Circulation Model , 2012 .

[104]  H. Simmons,et al.  Simulating the Long-Range Swell of Internal Waves Generated by Ocean Storms , 2012 .

[105]  J. Cherniawsky,et al.  Numerical Modeling of Internal Tide Generation along the Hawaiian Ridge , 2000 .

[106]  Eric Kunze,et al.  Internal-Wave-Driven Mixing: Global Geography and Budgets , 2017 .

[107]  P. Gaspar,et al.  Modelling explicit tides in the Indonesian seas: An important process for surface sea water properties. , 2017, Marine pollution bulletin.

[108]  Alistair Adcroft,et al.  A finite volume discretization of the pressure gradient force using analytic integration , 2008 .

[109]  F. Roosbeek RATGP95: a harmonic development of the tide-generating potential using an analytical method. , 1996 .

[110]  J. McWilliams,et al.  Mesoscale to Submesoscale Transition in the California Current System. Part I: Flow Structure, Eddy Flux, and Observational Tests , 2008 .

[111]  Walter Munk,et al.  The rotation of the earth , 1960 .

[112]  E. W. Schwiderski,et al.  On charting global ocean tides , 1980 .

[113]  Dimitris Menemenlis,et al.  Spectral decomposition of internal gravity wave sea surface height in global models , 2017 .

[114]  John A. Goff,et al.  Global prediction of abyssal hill root‐mean‐square heights from small‐scale altimetric gravity variability , 2010 .

[115]  P. Holloway A Numerical Model of Internal Tides with Application to the Australian North West Shelf , 1996 .

[116]  J. Nash,et al.  The geography of semidiurnal mode‐1 internal‐tide energy loss , 2013 .

[117]  G. Egbert,et al.  Efficient Inverse Modeling of Barotropic Ocean Tides , 2002 .

[118]  M. Hendershott,et al.  The Effects of Solid Earth Deformation on Global Ocean Tides , 1972 .

[119]  S. Garner A Topographic Drag Closure Built on an Analytical Base Flux , 2005 .

[120]  B. Arbic,et al.  The semi‐diurnal tide in Hudson strait as a resonant channel oscillation , 2008 .

[121]  E. D’Asaro The Energy Flux from the Wind to Near-Inertial Motions in the Surface Mixed Layer , 1985 .

[122]  E. Chassignet,et al.  Impact of Horizontal Resolution (1/12° to 1/50°) on Gulf Stream Separation, Penetration, and Variability , 2017 .

[123]  A. Wallcraft,et al.  Semidiurnal internal tide incoherence in the equatorial Pacific , 2017 .

[124]  Dimitris Menemenlis,et al.  An Observing System Simulation Experiment for the Calibration and Validation of the Surface Water Ocean Topography Sea Surface Height Measurement Using In Situ Platforms , 2017 .

[125]  R. Fiedler,et al.  Explicit tidal forcing in an ocean general circulation model , 2007 .

[126]  A. Wallcraft,et al.  Skill testing a three‐dimensional global tide model to historical current meter records , 2013 .

[127]  Dimitris Menemenlis,et al.  Mesoscale to submesoscale wavenumber spectra in Drake Passage , 2016 .

[128]  G. O. Williams,et al.  Internal wave observations from a midwater float, 2 , 1976 .

[129]  Gary D. Egbert,et al.  Estimates of M2 Tidal Energy Dissipation from TOPEX/Poseidon Altimeter Data , 2001 .

[130]  E. Kunze The Internal-Wave-Driven Meridional Overturning Circulation , 2017 .

[131]  E. Zaron Mapping the Nonstationary Internal Tide with Satellite Altimetry , 2017 .

[132]  Michael T. Chandler,et al.  The spatial and temporal distribution of marine geophysical surveys , 2011 .

[133]  D. Stammer,et al.  Inferring deep ocean tidal energy dissipation from the global high‐resolution data‐assimilative HAMTIDE model , 2014 .

[134]  Chris Garrett,et al.  Space-Time Scales of Internal Waves' A Progress Report , 1975 .

[135]  D. Cartwright A subharmonic lunar tide in the seas off Western Europe , 1975, Nature.

[136]  Bruce M. Howe,et al.  Barotropic and Baroclinic Tides in the Central North Pacific Ocean Determined from Long-Range Reciprocal Acoustic Transmissions , 1995 .

[137]  Yongsheng Xu,et al.  The Effects of Altimeter Instrument Noise on the Estimation of the Wavenumber Spectrum of Sea Surface Height , 2012 .

[138]  G. Flierl,et al.  Nonlinear Cascades of Surface Oceanic Geostrophic Kinetic Energy in the Frequency Domain , 2012 .

[139]  Chris Garrett,et al.  Predicting Changes in Tidal Regime: The Open Boundary Problem , 1977 .

[140]  D. Cartwright,et al.  Tides: A Scientific History , 1999 .

[141]  L. St. Laurent,et al.  Parameterizing tidal dissipation over rough topography , 2001 .

[142]  R. A. Heath Estimates of the resonant period and Q in the semi-diurnal tidal band in the North Atlantic and Pacific Oceans , 1981 .

[143]  Alan J. Wallcraft,et al.  Impact of Parameterized Internal Wave Drag on the Semidiurnal Energy Balance in a Global Ocean Circulation Model , 2016 .

[144]  Richard D. Ray,et al.  A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2 , 1999 .

[145]  C. Wunsch Internal tides in the ocean , 1975 .

[146]  Patrick F. Cummins,et al.  Simulation of Barotropic and Baroclinic Tides off Northern British Columbia , 1997 .

[147]  Ayon Sen,et al.  Zonal versus meridional velocity variance in satellite observations and realistic and idealized ocean circulation models , 2008 .

[148]  R. Ray,et al.  Tides and Satellite Altimetry , 2017 .

[149]  K. Polzin,et al.  Finescale Parameterizations of Turbulent Dissipation , 1995 .

[150]  C. Garrett,et al.  On tidal resonance in the global ocean and the back‐effect of coastal tides upon open‐ocean tides , 2009 .

[151]  J. Richman,et al.  Geostrophic Turbulence in the Frequency–Wavenumber Domain: Eddy-Driven Low-Frequency Variability* , 2014 .

[152]  Gary D. Egbert,et al.  Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum , 2004 .

[153]  A. Bennett,et al.  TOPEX/POSEIDON tides estimated using a global inverse model , 1994 .

[154]  B. Arbic,et al.  Spectral Energy Fluxes in Geostrophic Turbulence: Implications for Ocean Energetics , 2007 .

[155]  E. Joseph Metzger,et al.  Concurrent Simulation of the Eddying General Circulation and Tides in a Global Ocean Model , 2010 .

[156]  R. Hallberg,et al.  Internal wave generation in a global baroclinic tide model , 2004 .

[157]  W. Munk,et al.  Abyssal recipes II: energetics of tidal and wind mixing , 1998 .

[158]  R. Coleman Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications , 2001 .

[159]  E. D’Asaro Wind Forced Internal Waves in the North Pacific and Sargasso Sea , 1984 .

[160]  R. Helber,et al.  Optimizing Internal Wave Drag in a Forward Barotropic Model with Semidiurnal Tides , 2015 .

[161]  M. Müller The free oscillations of the world ocean in the period range 8 to 165 hours including the full loading effect , 2007 .

[162]  R. Hallberg A thermobaric instability of Lagrangian vertical coordinate ocean models , 2005 .