A long-period (P = 61.8 d) M5V dwarf eclipsing a Sun-like star from TESS and NGTS

Science & Technology Facilities Council (STFC) ST/M001962/1 ST/S002642/1 Swiss National Science Foundation (SNSF) Science & Technology Facilities Council (STFC) ST/R000824/1 ST/1L000733/1 ST/P000495/1 ST/N000757/1 STFC via an Ernest Rutherford Fellowship ST/R003726/1 ST/R0384X/1 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1161218 Centro de Astrofisca y Tecnologias Afines (CATA-Basal) Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) PB06 Chilean National Allocation Committee (CNTAC) 155475001865 CONICYT-PFCHA/Doctorado Nacional 21191829 Juan Carlos Torres Fellowship German Research Foundation (DFG) SPP 1992 RA 714/13-1

[1]  L. Buchhave,et al.  KIC 1571511B: a benchmark low-mass star in an eclipsing binary system in the Kepler field , 2011, 1111.2578.

[2]  Daniel Foreman-Mackey,et al.  eleanor: An Open-source Tool for Extracting Light Curves from the TESS Full-frame Images , 2019, Publications of the Astronomical Society of the Pacific.

[3]  Keivan G. Stassun,et al.  The Revised TESS Input Catalog and Candidate Target List , 2019, The Astronomical Journal.

[4]  P. Chaturvedi,et al.  Masses and Radii of Four Very Low-mass Stars in F+M Eclipsing Binary Systems , 2018, The Astronomical Journal.

[5]  Sara Seager,et al.  TOI-222: a single-transit TESS candidate revealed to be a 34-d eclipsing binary with CORALIE, EulerCam, and NGTS , 2019 .

[6]  P. Maxted,et al.  The atmospheric parameters of FGK stars using wavelet analysis of CORALIE spectra , 2018, 1801.06106.

[7]  P. Maxted,et al.  qpower2: A fast and accurate algorithm for the computation of exoplanet transit light curves with the power-2 limb-darkening law , 2018, Astronomy & Astrophysics.

[8]  G. Feiden,et al.  THE G+M ECLIPSING BINARY V530 ORIONIS: A STRINGENT TEST OF MAGNETIC STELLAR EVOLUTION MODELS FOR LOW-MASS STARS , 2014, 1410.6170.

[9]  C. D. Laney,et al.  The EBLM project II. A very hot, low-mass M dwarf in an eccentric and long-period, eclipsing binary system from the SuperWASP Survey , 2014, 1408.6900.

[10]  Don Pollacco,et al.  Single site observations of TESS single transit detections , 2018, Astronomy & Astrophysics.

[11]  Eric B. Ford,et al.  Improving the Efficiency of Markov Chain Monte Carlo for Analyzing the Orbits of Extrasolar Planets , 2005, astro-ph/0512634.

[12]  F. Bouchy,et al.  The EBLM project , 2019, Astronomy & Astrophysics.

[13]  J. Davenport,et al.  A Significant Overluminosity in the Transiting Brown Dwarf CWW 89Ab , 2018, The Astronomical Journal.

[14]  S. Baliunas,et al.  No Planet for Hd 166435 , 2022 .

[15]  P. Demarque,et al.  THE RADIUS DISCREPANCY IN LOW-MASS STARS: SINGLE VERSUS BINARIES , 2013, 1308.5558.

[16]  B. Scott Gaudi,et al.  An Estimate of the Yield of Single-transit Planetary Events from the Transiting Exoplanet Survey Satellite , 2018, The Astronomical Journal.

[17]  Mercedes Lopez-Morales,et al.  On the Correlation between the Magnetic Activity Levels, Metallicities, and Radii of Low-Mass Stars , 2007, astro-ph/0701702.

[18]  I. Ribas,et al.  GU Bootis: A New 0.6 M☉ Detached Eclipsing Binary , 2005, astro-ph/0505001.

[19]  Ignasi Ribas,et al.  Absolute Dimensions of the M-Type Eclipsing Binary YY Geminorum (Castor C): A Challenge to Evolutionary Models in the Lower Main Sequence* , 2001 .

[20]  F. Allard,et al.  Evolutionary Models for Very Low-Mass Stars and Brown Dwarfs with Dusty Atmospheres , 2000 .

[21]  Adam L. Kraus,et al.  THE MASS–RADIUS(–ROTATION?) RELATION FOR LOW-MASS STARS , 2010, 1011.2757.

[22]  J. Pepper,et al.  A Bright Short Period M-M Eclipsing Binary from the KELT Survey: Magnetic Activity and the Mass–Radius Relationship for M Dwarfs , 2017, 1706.02401.

[23]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[24]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite , 2014, 1406.0151.

[25]  Timothy D. Morton,et al.  isochrones: Stellar model grid package , 2015 .

[26]  Jieun Choi,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST). I. SOLAR-SCALED MODELS , 2016, 1604.08592.

[27]  Peter Tenenbaum,et al.  The TESS science processing operations center , 2016, Astronomical Telescopes + Instrumentation.

[28]  P. Maxted Comparison of the power-2 limb-darkening law from the STAGGER-grid to Kepler light curves of transiting exoplanets , 2018, Astronomy & Astrophysics.

[29]  Russel J. White,et al.  STELLAR DIAMETERS AND TEMPERATURES. II. MAIN-SEQUENCE K- AND M-STARS , 2012, 1208.2431.

[30]  D. Dragomir,et al.  Las Cumbres Observatory Global Telescope Network , 2013, 1305.2437.

[31]  Gregory A. Feiden,et al.  REEVALUATING THE MASS–RADIUS RELATION FOR LOW-MASS, MAIN-SEQUENCE STARS , 2012, 1207.3090.

[32]  Edward Gillen,et al.  The Next Generation Transit Survey (NGTS) , 2018 .

[33]  F. Allard,et al.  New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit , 2015, 1503.04107.

[34]  C. Barache,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[35]  Don Pollacco,et al.  An examination of the effect of the TESS extended mission on southern hemisphere monotransits , 2019, Astronomy & Astrophysics.

[36]  B. Enoch,et al.  The WASP Project and the SuperWASP Cameras , 2006, astro-ph/0608454.

[37]  Aaron Dotter,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST) 0: METHODS FOR THE CONSTRUCTION OF STELLAR ISOCHRONES , 2016, 1601.05144.

[38]  I. Ribas,et al.  The 0.4-$M_{\odot}$ eclipsing binary CU Cancri - Absolute dimensions, comparison with evolutionary models and possible evidence for a circumstellar dust disk , 2002, astro-ph/0211086.

[39]  A. Beiser,et al.  Climatic change : evidence, causes, and effects , 1953 .

[40]  J. J. González-Vidal,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[41]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.