Structural and mechanistic basis for translation inhibition by macrolide and ketolide antibiotics

[1]  Daniel N. Wilson,et al.  Context-specific action of macrolide antibiotics on the eukaryotic ribosome , 2021, Nature Communications.

[2]  A. Mankin,et al.  Structure of Erm-modified 70S ribosome reveals the mechanism of macrolide resistance. , 2020, Nature Chemical Biology.

[3]  A. Mankin,et al.  A long-distance rRNA base pair impacts the ability of macrolide antibiotics to kill bacteria , 2020, Proceedings of the National Academy of Sciences.

[4]  J. Puglisi,et al.  Mechanism of ribosome stalling during translation of a poly(A) tail , 2019, Nature Structural & Molecular Biology.

[5]  R. Green,et al.  Molecular mechanism of translational stalling by inhibitory codon combinations and poly(A) tracts , 2019, bioRxiv.

[6]  C. Innis,et al.  Ornithine capture by a translating ribosome controls bacterial polyamine synthesis , 2019, Nature Microbiology.

[7]  Camilo Aponte-Santamaría,et al.  GROmaρs: A GROMACS-Based Toolset to Analyze Density Maps Derived from Molecular Dynamics Simulations. , 2019, Biophysical journal.

[8]  Erik Lindahl,et al.  New tools for automated high-resolution cryo-EM structure determination in RELION-3 , 2018, eLife.

[9]  Britta Seip,et al.  Ribosomal stalling landscapes revealed by high-throughput inverse toeprinting of mRNA libraries , 2018, Life Science Alliance.

[10]  A. Mankin,et al.  How Macrolide Antibiotics Work. , 2018, Trends in biochemical sciences.

[11]  T. Steitz,et al.  Ribosome-Targeting Antibiotics: Modes of Action, Mechanisms of Resistance, and Implications for Drug Design. , 2018, Annual review of biochemistry.

[12]  Conrad C. Huang,et al.  UCSF ChimeraX: Meeting modern challenges in visualization and analysis , 2018, Protein science : a publication of the Protein Society.

[13]  A. Mankin,et al.  Kinetics of drug–ribosome interactions defines the cidality of macrolide antibiotics , 2017, Proceedings of the National Academy of Sciences.

[14]  Daniel N. Wilson,et al.  Structural Basis for Polyproline-Mediated Ribosome Stalling and Rescue by the Translation Elongation Factor EF-P. , 2017, Molecular cell.

[15]  G. Dinos The macrolide antibiotic renaissance , 2017, British journal of pharmacology.

[16]  Alan F. Rubin,et al.  A statistical framework for analyzing deep mutational scanning data , 2017, Genome Biology.

[17]  Jingdong Cheng,et al.  The force-sensing peptide VemP employs extreme compaction and secondary structure formation to induce ribosomal stalling , 2017, eLife.

[18]  A. Mankin,et al.  Context‐specific action of ribosomal antibiotics , 2017, Annual review of microbiology.

[19]  D. Klepacki,et al.  Binding of Macrolide Antibiotics Leads to Ribosomal Selection against Specific Substrates Based on Their Charge and Size. , 2016, Cell reports.

[20]  Daniel N. Wilson,et al.  A combined cryo-EM and molecular dynamics approach reveals the mechanism of ErmBL-mediated translation arrest , 2016, Nature Communications.

[21]  S. Douthwaite,et al.  Resistance to ketolide antibiotics by coordinated expression of rRNA methyltransferases in a bacterial producer of natural ketolides , 2015, Proceedings of the National Academy of Sciences.

[22]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[23]  Kai Zhang,et al.  Gctf: Real-time CTF determination and correction , 2015, bioRxiv.

[24]  Daniel S. Terry,et al.  Distinct tRNA Accommodation Intermediates Observed on the Ribosome with the Antibiotics Hygromycin A and A201A. , 2015, Molecular cell.

[25]  Marina V. Rodnina,et al.  Structure of the E. coli ribosome–EF-Tu complex at <3 Å resolution by Cs-corrected cryo-EM , 2015, Nature.

[26]  Daniel N. Wilson,et al.  Drug sensing by the ribosome induces translational arrest via active site perturbation. , 2014, Molecular cell.

[27]  David W. Schryer,et al.  The general mode of translation inhibition by macrolide antibiotics , 2014, Proceedings of the National Academy of Sciences.

[28]  Amber R. Davis,et al.  Sequence selectivity of macrolide-induced translational attenuation , 2014, Proceedings of the National Academy of Sciences.

[29]  T. Steitz,et al.  A proton wire to couple aminoacyl-tRNA accommodation and peptide bond formation on the ribosome , 2014, Nature Structural &Molecular Biology.

[30]  Klaus Schulten,et al.  Macrolide antibiotics allosterically predispose the ribosome for translation arrest , 2014, Proceedings of the National Academy of Sciences.

[31]  Daniel N. Wilson,et al.  Molecular basis for erythromycin-dependent ribosome stalling during translation of the ErmBL leader peptide , 2014, Nature Communications.

[32]  Daniel N. Wilson Ribosome-targeting antibiotics and mechanisms of bacterial resistance , 2013, Nature Reviews Microbiology.

[33]  Jiajie Zhang,et al.  PEAR: a fast and accurate Illumina Paired-End reAd mergeR , 2013, Bioinform..

[34]  A. Mankin,et al.  Tools for Characterizing Bacterial Protein Synthesis Inhibitors , 2013, Antimicrobial Agents and Chemotherapy.

[35]  A. Mankin,et al.  Deregulation of translation due to post-transcriptional modification of rRNA explains why erm genes are inducible , 2013, Nature Communications.

[36]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[37]  K. Kannan,et al.  Selective Protein Synthesis by Ribosomes with a Drug-Obstructed Exit Tunnel , 2012, Cell.

[38]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[39]  J. Cate,et al.  Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action , 2010, Proceedings of the National Academy of Sciences.

[40]  T. Steitz,et al.  Revisiting the structures of several antibiotics bound to the bacterial ribosome , 2010, Proceedings of the National Academy of Sciences.

[41]  K. Kannan,et al.  The key function of a conserved and modified rRNA residue in the ribosomal response to the nascent peptide , 2010, The EMBO journal.

[42]  Vincent B. Chen,et al.  MolProbity: all-atom structure validation for macromolecular crystallography , 2009, Acta crystallographica. Section D, Biological crystallography.

[43]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[44]  Bartek Wilczynski,et al.  Biopython: freely available Python tools for computational molecular biology and bioinformatics , 2009, Bioinform..

[45]  H. Ramu,et al.  Programmed drug‐dependent ribosome stalling , 2009, Molecular microbiology.

[46]  T. Cheatham,et al.  Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations , 2008, The journal of physical chemistry. B.

[47]  Gregor Blaha,et al.  Mutations outside the anisomycin-binding site can make ribosomes drug-resistant. , 2008, Journal of molecular biology.

[48]  A. Mankin,et al.  Induction of erm(C) Expression by Noninducing Antibiotics , 2008, Antimicrobial Agents and Chemotherapy.

[49]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[50]  A. Kwon,et al.  ermK leader peptide: Amino acid sequence critical for induction by erythromycin , 2006, Archives of pharmacal research.

[51]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[52]  T. Martin Schmeing,et al.  An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA , 2005, Nature.

[53]  Thomas A Steitz,et al.  Structural insights into the roles of water and the 2' hydroxyl of the P site tRNA in the peptidyl transferase reaction. , 2005, Molecular cell.

[54]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[55]  J. Richardson,et al.  The penultimate rotamer library , 2000, Proteins.

[56]  Berk Hess,et al.  Improving efficiency of large time‐scale molecular dynamics simulations of hydrogen‐rich systems , 1999, Journal of computational chemistry.

[57]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[58]  B. Weisblum Erythromycin resistance by ribosome modification , 1995, Antimicrobial agents and chemotherapy.

[59]  D. Bechhofer,et al.  Regulation of the macrolide-lincosamide-streptogramin B resistance gene ermD , 1992, Journal of bacteriology.

[60]  B. Weisblum,et al.  Transcriptional attenuation control of ermK, a macrolide-lincosamide-streptogramin B resistance determinant from Bacillus licheniformis , 1991, Journal of bacteriology.

[61]  G Vriend,et al.  WHAT IF: a molecular modeling and drug design program. , 1990, Journal of molecular graphics.

[62]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[63]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[64]  A. Mankin,et al.  Macrolide myths. , 2008, Current opinion in microbiology.

[65]  Berk Hess,et al.  P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation. , 2008, Journal of chemical theory and computation.

[66]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[67]  Vincent B. Chen,et al.  Acta Crystallographica Section D Biological , 2001 .

[68]  S. Douthwaite Structure-activity relationships of ketolides vs. macrolides. , 2001, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[69]  Berk Hess,et al.  Improving Efficiency of Large Time-Scale Molecular Dynamics Simulations of Hydrogen-Rich Systems , 1999 .

[70]  T. Pallasch Macrolide antibiotics. , 1997, Dentistry today.