Deep Learning Approaches to Text Production

Abstract Text production has many applications. It is used, for instance, to generate dialogue turns from dialogue moves, verbalise the content of knowledge bases, or generate English sentences fro...

[1]  Zhen-Hua Ling,et al.  Distraction-based neural networks for modeling documents , 2016, IJCAI 2016.

[2]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[3]  Mirella Lapata,et al.  Neural Summarization by Extracting Sentences and Words , 2016, ACL.

[4]  Verena Rieser,et al.  The E2E Dataset: New Challenges For End-to-End Generation , 2017, SIGDIAL Conference.

[5]  Mirella Lapata,et al.  Sentence Simplification with Deep Reinforcement Learning , 2017, EMNLP.

[6]  Ani Nenkova,et al.  Syntactic Simplification for Improving Content Selection in Multi-Document Summarization , 2004, COLING.

[7]  Regina Barzilay,et al.  Extracting Paraphrases from a Parallel Corpus , 2001, ACL.

[8]  Sara Rosenthal,et al.  Time-Efficient Creation of an Accurate Sentence Fusion Corpus , 2010, HLT-NAACL.

[9]  Xiaojun Wan,et al.  Abstractive Document Summarization with a Graph-Based Attentional Neural Model , 2017, ACL.

[10]  Bowen Zhou,et al.  SummaRuNNer: A Recurrent Neural Network Based Sequence Model for Extractive Summarization of Documents , 2016, AAAI.

[11]  Anja Belz,et al.  The First Surface Realisation Shared Task: Overview and Evaluation Results , 2011, ENLG.

[12]  Hang Li,et al.  Neural Responding Machine for Short-Text Conversation , 2015, ACL.

[13]  Mirella Lapata,et al.  Ranking Sentences for Extractive Summarization with Reinforcement Learning , 2018, NAACL.

[14]  Chris Callison-Burch,et al.  Problems in Current Text Simplification Research: New Data Can Help , 2015, TACL.

[15]  Shashi Narayan,et al.  Hybrid Simplification using Deep Semantics and Machine Translation , 2014, ACL.

[16]  Daniel Marcu,et al.  Statistics-Based Summarization - Step One: Sentence Compression , 2000, AAAI/IAAI.

[17]  Shashi Narayan,et al.  Unsupervised Sentence Simplification Using Deep Semantics , 2015, INLG.

[18]  Richard Socher,et al.  A Deep Reinforced Model for Abstractive Summarization , 2017, ICLR.

[19]  David Vandyke,et al.  Semantically Conditioned LSTM-based Natural Language Generation for Spoken Dialogue Systems , 2015, EMNLP.

[20]  Yejin Choi,et al.  Deep Communicating Agents for Abstractive Summarization , 2018, NAACL.

[21]  Claire Gardent,et al.  The WebNLG Challenge: Generating Text from RDF Data , 2017, INLG.

[22]  Kathleen McKeown,et al.  Supervised Sentence Fusion with Single-Stage Inference , 2013, IJCNLP.

[23]  Mirella Lapata,et al.  Paraphrasing Revisited with Neural Machine Translation , 2017, EACL.

[24]  Kristina Toutanova,et al.  A Dataset and Evaluation Metrics for Abstractive Compression of Sentences and Short Paragraphs , 2016, EMNLP.

[25]  Mark T. Maybury,et al.  Automatic Summarization , 2002, Computational Linguistics.

[26]  Navdeep Jaitly,et al.  Pointer Networks , 2015, NIPS.

[27]  Jonathan May,et al.  SemEval-2017 Task 9: Abstract Meaning Representation Parsing and Generation , 2017, *SEMEVAL.

[28]  Mirella Lapata,et al.  Sentence Compression Beyond Word Deletion , 2008, COLING.

[29]  Shashi Narayan,et al.  Split and Rephrase , 2017, EMNLP.

[30]  Mirella Lapata,et al.  Document Modeling with External Attention for Sentence Extraction , 2018, ACL.

[31]  Shashi Narayan,et al.  Paraphrase Generation from Latent-Variable PCFGs for Semantic Parsing , 2016, INLG.

[32]  Emiel Krahmer,et al.  Paraphrase Generation as Monolingual Translation: Data and Evaluation , 2010, INLG.

[33]  Mirella Lapata,et al.  Automatic Generation of Story Highlights , 2010, ACL.

[34]  Alan Ritter,et al.  Adversarial Learning for Neural Dialogue Generation , 2017, EMNLP.

[35]  Ramakanth Pasunuru,et al.  Multi-Reward Reinforced Summarization with Saliency and Entailment , 2018, NAACL.

[36]  Mirella Lapata,et al.  Learning to Paraphrase for Question Answering , 2017, EMNLP.

[37]  David Vandyke,et al.  Multi-domain Neural Network Language Generation for Spoken Dialogue Systems , 2016, NAACL.

[38]  Chris Callison-Burch,et al.  Paraphrasing with Bilingual Parallel Corpora , 2005, ACL.

[39]  Geoffrey E. Hinton,et al.  Generating Text with Recurrent Neural Networks , 2011, ICML.

[40]  Lukasz Kaiser,et al.  Sentence Compression by Deletion with LSTMs , 2015, EMNLP.

[41]  Michael Strube,et al.  Dependency Tree Based Sentence Compression , 2008, INLG.

[42]  Jason Weston,et al.  A Neural Attention Model for Abstractive Sentence Summarization , 2015, EMNLP.

[43]  Katja Filippova,et al.  Multi-Sentence Compression: Finding Shortest Paths in Word Graphs , 2010, COLING.

[44]  Yejin Choi,et al.  Neural AMR: Sequence-to-Sequence Models for Parsing and Generation , 2017, ACL.

[45]  Mirella Lapata,et al.  Learning to Simplify Sentences with Quasi-Synchronous Grammar and Integer Programming , 2011, EMNLP.

[46]  Xiaojun Wan,et al.  Towards a Unified Approach to Simultaneous Single-Document and Multi-Document Summarizations , 2010, COLING.

[47]  Iryna Gurevych,et al.  A Monolingual Tree-based Translation Model for Sentence Simplification , 2010, COLING.

[48]  Christopher D. Manning,et al.  Get To The Point: Summarization with Pointer-Generator Networks , 2017, ACL.

[49]  Shashi Narayan,et al.  Creating Training Corpora for NLG Micro-Planners , 2017, ACL.

[50]  Emiel Krahmer,et al.  Sentence Simplification by Monolingual Machine Translation , 2012, ACL.

[51]  Bowen Zhou,et al.  Abstractive Text Summarization using Sequence-to-sequence RNNs and Beyond , 2016, CoNLL.

[52]  Rui Zhang,et al.  Graph-based Neural Multi-Document Summarization , 2017, CoNLL.