The importance of metadata to assess information content in digital reconstructions of neuronal morphology

[1]  Giorgio A Ascoli,et al.  Quantitative Investigations of Axonal and Dendritic Arbors , 2015, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[2]  Kamran Diba,et al.  Neurosharing: large-scale data sets (spike, LFP) recorded from the hippocampal-entorhinal system in behaving rats , 2014, F1000Research.

[3]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[4]  Jiandong Yu,et al.  Status epilepticus enhances tonic GABA currents and depolarizes GABA reversal potential in dentate fast-spiking basket cells. , 2013, Journal of neurophysiology.

[5]  Giorgio A. Ascoli,et al.  Digital Morphometry of Rat Cerebellar Climbing Fibers Reveals Distinct Branch and Bouton Types , 2012, The Journal of Neuroscience.

[6]  Manuel Marx,et al.  Morphology and Physiology of Excitatory Neurons in Layer 6b of the Somatosensory Rat Barrel Cortex , 2012, Cerebral cortex.

[7]  Giorgio A. Ascoli,et al.  Digital Reconstructions of Neuronal Morphology: Three Decades of Research Trends , 2012, Front. Neurosci..

[8]  P. Brunjes,et al.  The mouse olfactory peduncle , 2011, The Journal of comparative neurology.

[9]  C. W. Picanço-Diniz,et al.  S1 to S2 hind- and forelimb projections in the agouti somatosensory cortex: Axon fragments morphological analysis , 2010, Journal of Chemical Neuroanatomy.

[10]  Eduardo Calixto,et al.  Quantitative morphometry of electrophysiologically identified CA3b interneurons reveals robust local geometry and distinct cell classes , 2009, The Journal of comparative neurology.

[11]  Ju Lu,et al.  The Interscutularis Muscle Connectome , 2009, PLoS biology.

[12]  Giorgio A. Ascoli,et al.  NeuroMorpho.Org Implementation of Digital Neuroscience: Dense Coverage and Integration with the NIF , 2008, Neuroinformatics.

[13]  Zoltan Nusser,et al.  Distinct Deep Short-Axon Cell Subtypes of the Main Olfactory Bulb Provide Novel Intrabulbar and Extrabulbar GABAergic Connections , 2008, The Journal of Neuroscience.

[14]  Miles A. Whittington,et al.  Minimum Information about a Neuroscience Investigation (MINI): Electrophysiology , 2008 .

[15]  G. Ascoli,et al.  NeuroMorpho.Org: A Central Resource for Neuronal Morphologies , 2007, The Journal of Neuroscience.

[16]  György Buzsáki,et al.  Three-dimensional reconstruction of the axon arbor of a CA3 pyramidal cell recorded and filled in vivo , 2007, Brain Structure and Function.

[17]  C. McBain,et al.  GABAergic Input onto CA3 Hippocampal Interneurons Remains Shunting throughout Development , 2006, The Journal of Neuroscience.

[18]  Massimo Scanziani,et al.  Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells , 2006, Nature Neuroscience.

[19]  Nelson Spruston,et al.  Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites , 2005, The Journal of physiology.

[20]  Giorgio A Ascoli,et al.  Developmental changes in spinal motoneuron dendrites in neonatal mice , 2005, The Journal of comparative neurology.

[21]  J. M. Koolhaas,et al.  Bidirectional shift in the cornu ammonis 3 pyramidal dendritic organization following brief stress , 2004, Neuroscience.

[22]  H. Markram,et al.  Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. , 2002, Cerebral cortex.

[23]  Ginette Horcholle-Bossavit,et al.  Neuronal morphology data bases: morphological noise and assesment of data quality , 2002, Network.

[24]  J. Jacobs,et al.  Regional dendritic and spine variation in human cerebral cortex: a quantitative golgi study. , 2001, Cerebral cortex.

[25]  Ginette Horcholle-Bossavit,et al.  The problem of the morphological noise in reconstructed dendritic arborizations , 2000, Journal of Neuroscience Methods.

[26]  B. Jacobs,et al.  Life‐span dendritic and spine changes in areas 10 and 18 of human cortex: A quantitative golgi study , 1997, The Journal of comparative neurology.

[27]  T. L. Hayes,et al.  Magnopyramidal neurons in the anterior motor speech region. Dendritic features and interhemispheric comparisons. , 1996, Archives of neurology.

[28]  D. Amaral,et al.  A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus , 1995, The Journal of comparative neurology.

[29]  N. Bannister,et al.  Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: I. Branching patterns , 1995, The Journal of comparative neurology.

[30]  J. S. Lund,et al.  Synchronous development of pyramidal neuron dendritic spines and parvalbumin-immunoreactive chandelier neuron axon terminals in layer III of monkey prefrontal cortex , 1995, Neuroscience.

[31]  N. Tamamaki,et al.  Projection of the entorhinal layer II neurons in the rat as revealed by intracellular pressure‐injection of neurobiotin , 1993, Hippocampus.

[32]  B. Claiborne,et al.  Dendritic growth and regression in rat dentate granule cells during late postnatal development. , 1990, Brain research. Developmental brain research.

[33]  Ruchi Parekh,et al.  Neuronal Morphology Goes Digital: A Research Hub for Cellular and System Neuroscience , 2013, Neuron.