Parametric study of vertical vibrations of circular flexible foundations on layered media

The paper presents results of a parametric study of vertical oscillations of a flexible circular plate on the surface of an elastic hale-space and an elastic layered system. The solution of the problem is based on the «ring method». Vertical oscillations have been analysed to determine the displacement and soil reaction distributions at the soil-plate interface and the impedance functions. Parameters of the study include material and geometrical properties of a soil system and a plate and the load distribution on the plate. The results indicate significantly different behaviour of a flexible plate from that of a rigid one. Based on the observed behaviour, a classification of plates has been suggested.

[1]  E. Kausel,et al.  Stiffness matrices for layered soils , 1981 .

[2]  F. E. Richart,et al.  Vibrations of soils and foundations , 1970 .

[3]  Dimitrios E. Beskos,et al.  Dynamic response of 3-D flexible foundations by time domain BEM and FEM , 1985 .

[4]  J. E. Luco,et al.  Dynamic response of flexible rectangular foundations on an elastic half‐space , 1981 .

[5]  H. R. Riggs,et al.  Influence of foundation flexibility on soil‐structure interaction , 1985 .

[6]  Eduardo Kausel,et al.  An explicit solution for the Green functions for dynamic loads in layered media , 1981 .

[7]  Somsak Swaddiwudhipong,et al.  Dynamic response of surface foundations on layered media , 1991 .

[8]  J. Enrique Luco Vibrations of a rigid disc on a layered viscoelastic medium , 1976 .

[9]  Dimitris L. Karabalis,et al.  Dynamic analysis of 3‐D flexible embedded foundations by a frequency domain BEM‐FEM , 1988 .

[10]  Michio Iguchi,et al.  Vibration of Flexible Plate on Viscoelastic Medium , 1982 .

[11]  George Gazetas,et al.  Analysis of machine foundation vibrations: state of the art , 1983 .

[12]  John P. Wolf,et al.  Free‐field response from inclined SV‐ and P‐waves and Rayleigh‐waves , 1982 .

[13]  Y. J. Lin Dynamic Response of Circular Plates Resting on Viscoelastic Half Space , 1978 .

[14]  Nenad Gucunski,et al.  Numerical simulation of the SASW test , 1992 .

[15]  David Bushnell,et al.  Computerized analysis of shells-governing equations , 1984 .

[16]  J. E. Luco,et al.  Impedance functions for a rigid foundation on a layered medium , 1974 .

[17]  Eduardo Kausel,et al.  Elements for the numerical analysis of wave motion in layered strata , 1983 .

[18]  N. A. Haskell The Dispersion of Surface Waves on Multilayered Media , 1953 .

[19]  W. Thomson,et al.  Transmission of Elastic Waves through a Stratified Solid Medium , 1950 .