Design and analysis of double-fused 1.55-/spl mu/m vertical-cavity lasers
暂无分享,去创建一个
John E. Bowers | Richard P. Mirin | Joachim Piprek | Evelyn L. Hu | Dubravko I. Babic | Klaus Streubel | N. M. Margalit | D. E. Mars | J. Bowers | J. Piprek | R. Mirin | K. Streubel | E. Hu | N. Margalit | D. Babic | D. Mars
[1] W. Spitzer,et al. Infrared Absorption in n-Type Germanium , 1956 .
[2] J. M. Whelan,et al. Infrared Absorption and Electron Effective Mass inn-Type Gallium Arsenide , 1959 .
[3] R. Braunstein,et al. Intervalence band transitions in gallium arsenide , 1959 .
[4] D. E. Hill. Infrared Transmission and Fluorescence of Doped Gallium Arsenide , 1964 .
[5] H. Macleod,et al. Thin-Film Optical Filters , 1969 .
[6] Jacques I. Pankove,et al. Optical Processes in Semiconductors , 1971 .
[7] Martin A. Afromowitz,et al. Refractive index of Ga1−xAlxAs , 1974 .
[8] C. Henry,et al. The effect of intervalence band absorption on the thermal behavior of InGaAsP lasers , 1983 .
[9] H. C. Casey,et al. Variation of intervalence band absorption with hole concentration in p‐type InP , 1984 .
[10] J. Lasky. Wafer bonding for silicon‐on‐insulator technologies , 1986 .
[11] D. E. Mull,et al. Wafer fusion: A novel technique for optoelectronic device fabrication and monolithic integration , 1990 .
[12] Larsson,et al. Optical absorption by free holes in heavily doped GaAs. , 1991, Physical review. B, Condensed matter.
[13] Stefan Bengstsson. Semiconductor wafer bonding: a review of interfacial properties and applications , 1992 .
[14] A. Mircea,et al. Highly thermally stable, high-performance InGaAsP: InGaAsP multi-quantum-well structures for optical devices by atmospheric pressure MOVPE , 1992 .
[15] Kenichi Iga,et al. Near room temperature continuous wave lasing characteristics of GaInAsP/InP surface emitting laser , 1993 .
[16] U. Koren,et al. High quantum efficiency and narrow absorption bandwidth of the wafer-fused resonant In/sub 0.53/Ga/sub 0.47/As photodetectors , 1994, IEEE Photonics Technology Letters.
[17] Larry A. Coldren,et al. High wall-plug efficiency temperature-insensitive vertical-cavity surface-emitting lasers with low-barrier p-type mirrors , 1994, Photonics West - Lasers and Applications in Science and Engineering.
[18] H. Wenzel,et al. Modeling thermal effects on the light vs. current characteristic of gain-guided vertical-cavity surface-emitting lasers , 1994, IEEE Photonics Technology Letters.
[19] Rajeev J Ram,et al. Low threshold, wafer fused long wavelength vertical cavity lasers , 1994 .
[20] Takeshi Kamijoh,et al. Effects of Heat Treatment on Bonding Properties in InP-to-Si Direct Wafer Bonding , 1994 .
[21] C. P. Kuo,et al. Very high‐efficiency semiconductor wafer‐bonded transparent‐substrate (AlxGa1−x)0.5In0.5P/GaP light‐emitting diodes , 1994 .
[22] John E. Bowers,et al. Silicon hetero-interface photodetector , 1995, LEOS '95. IEEE Lasers and Electro-Optics Society 1995 Annual Meeting. 8th Annual Meeting. Conference Proceedings.
[23] John E. Bowers,et al. Transverse-mode and polarisation characteristics of double-fused 1.52 mu m vertical-cavity lasers , 1995 .
[24] M. Aoki,et al. Fabrication of (001) InP‐based 1.55‐μm wavelength lasers on a (110) GaAs substrate by direct bonding (A prospect for free‐orientation integration) , 1995 .
[25] John E. Bowers,et al. GaAs to InP wafer fusion , 1995 .
[26] F. A. Kish,et al. Low‐resistance Ohmic conduction across compound semiconductor wafer‐bonded interfaces , 1995 .
[27] J. J. Dudley,et al. Double‐fused 1.52‐μm vertical‐cavity lasers , 1995 .
[28] Long Yang,et al. Room-temperature continuous-wave operation of 1.54-μm vertical-cavity lasers , 1995, IEEE Photonics Technology Letters.
[29] Characterisation of metal mirrors on GaAs , 1996 .
[30] Hiromi Oohashi,et al. Study on the dominant mechanisms for the temperature sensitivity of threshold current in 1.3-/spl mu/m InP-based strained-layer quantum-well lasers , 1996 .
[31] K. Streubel,et al. Submilliamp long wavelength vertical cavity lasers , 1996, Conference Digest. 15th IEEE International Semiconductor Laser Conference.
[32] Yoshio Itoh,et al. 1.55 /spl mu/m vertical-cavity surface-emitting lasers with wafer-fused InGaAsP/lnP-GaAs/AlAs DBRs , 1996 .
[33] J. Bowers,et al. Fabrication and characteristics of double-fused vertical-cavity lasers , 1996 .
[34] S. Uchiyama,et al. Continuous-Wave Operation Up to 36/spl deg/c of 1.3-/spl mu/m GaInAsP/InP Strained-Layer Multi-quantum-Wells Surface-Emitting Laser , 1996 .
[35] John E. Bowers,et al. Silicon heterointerface photodetector , 1996 .
[36] J. Oudar,et al. Submilliwatt optical bistability in wafer fused vertical cavity at 1.55-μm wavelength , 1996, IEEE Photonics Technology Letters.
[37] K. Streubel,et al. Single-mode, 1 Gb/s operation of double-fused vertical-cavity lasers at 1.54 μm , 1996, IEEE Photonics Technology Letters.
[38] J. Bowers,et al. Numerical analysis of 1.54 μm double‐fused vertical‐cavity lasers operating continuous‐wave up to 33 °C , 1996 .
[39] Y. Okuno. Investigation on direct bonding of III–V semiconductor wafers with lattice mismatch and orientation mismatch , 1996 .
[40] John E. Bowers,et al. 1.55 /spl mu/m vertical cavity laser transmission over 200 km at 622 Mbit/s , 1996 .
[41] John E. Bowers,et al. Laterally oxidized long wavelength CW vertical- cavity lasers , 1996 .
[42] R. Schneider,et al. Uniparabolic mirror grading for vertical cavity surface emitting lasers , 1996 .
[43] J. Bowers,et al. Wafer Fusion for Surface-Normal Optoelectronic Device Applications , 1997 .
[44] John E. Bowers,et al. Simulation and analysis of 1.55 μm double-fused vertical-cavity lasers , 1997 .