Design and analysis of double-fused 1.55-/spl mu/m vertical-cavity lasers

Detailed design and experimental characterization of three generations of double-fused vertical-cavity lasers are described. The result of this design evolution is the first above-room-temperature continuous-wave operation of long-wavelength vertical-cavity lasers. Threshold currents of 2.3 mA and yields greater than 90% have been obtained.

[1]  W. Spitzer,et al.  Infrared Absorption in n-Type Germanium , 1956 .

[2]  J. M. Whelan,et al.  Infrared Absorption and Electron Effective Mass inn-Type Gallium Arsenide , 1959 .

[3]  R. Braunstein,et al.  Intervalence band transitions in gallium arsenide , 1959 .

[4]  D. E. Hill Infrared Transmission and Fluorescence of Doped Gallium Arsenide , 1964 .

[5]  H. Macleod,et al.  Thin-Film Optical Filters , 1969 .

[6]  Jacques I. Pankove,et al.  Optical Processes in Semiconductors , 1971 .

[7]  Martin A. Afromowitz,et al.  Refractive index of Ga1−xAlxAs , 1974 .

[8]  C. Henry,et al.  The effect of intervalence band absorption on the thermal behavior of InGaAsP lasers , 1983 .

[9]  H. C. Casey,et al.  Variation of intervalence band absorption with hole concentration in p‐type InP , 1984 .

[10]  J. Lasky Wafer bonding for silicon‐on‐insulator technologies , 1986 .

[11]  D. E. Mull,et al.  Wafer fusion: A novel technique for optoelectronic device fabrication and monolithic integration , 1990 .

[12]  Larsson,et al.  Optical absorption by free holes in heavily doped GaAs. , 1991, Physical review. B, Condensed matter.

[13]  Stefan Bengstsson Semiconductor wafer bonding: a review of interfacial properties and applications , 1992 .

[14]  A. Mircea,et al.  Highly thermally stable, high-performance InGaAsP: InGaAsP multi-quantum-well structures for optical devices by atmospheric pressure MOVPE , 1992 .

[15]  Kenichi Iga,et al.  Near room temperature continuous wave lasing characteristics of GaInAsP/InP surface emitting laser , 1993 .

[16]  U. Koren,et al.  High quantum efficiency and narrow absorption bandwidth of the wafer-fused resonant In/sub 0.53/Ga/sub 0.47/As photodetectors , 1994, IEEE Photonics Technology Letters.

[17]  Larry A. Coldren,et al.  High wall-plug efficiency temperature-insensitive vertical-cavity surface-emitting lasers with low-barrier p-type mirrors , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[18]  H. Wenzel,et al.  Modeling thermal effects on the light vs. current characteristic of gain-guided vertical-cavity surface-emitting lasers , 1994, IEEE Photonics Technology Letters.

[19]  Rajeev J Ram,et al.  Low threshold, wafer fused long wavelength vertical cavity lasers , 1994 .

[20]  Takeshi Kamijoh,et al.  Effects of Heat Treatment on Bonding Properties in InP-to-Si Direct Wafer Bonding , 1994 .

[21]  C. P. Kuo,et al.  Very high‐efficiency semiconductor wafer‐bonded transparent‐substrate (AlxGa1−x)0.5In0.5P/GaP light‐emitting diodes , 1994 .

[22]  John E. Bowers,et al.  Silicon hetero-interface photodetector , 1995, LEOS '95. IEEE Lasers and Electro-Optics Society 1995 Annual Meeting. 8th Annual Meeting. Conference Proceedings.

[23]  John E. Bowers,et al.  Transverse-mode and polarisation characteristics of double-fused 1.52 mu m vertical-cavity lasers , 1995 .

[24]  M. Aoki,et al.  Fabrication of (001) InP‐based 1.55‐μm wavelength lasers on a (110) GaAs substrate by direct bonding (A prospect for free‐orientation integration) , 1995 .

[25]  John E. Bowers,et al.  GaAs to InP wafer fusion , 1995 .

[26]  F. A. Kish,et al.  Low‐resistance Ohmic conduction across compound semiconductor wafer‐bonded interfaces , 1995 .

[27]  J. J. Dudley,et al.  Double‐fused 1.52‐μm vertical‐cavity lasers , 1995 .

[28]  Long Yang,et al.  Room-temperature continuous-wave operation of 1.54-μm vertical-cavity lasers , 1995, IEEE Photonics Technology Letters.

[29]  Characterisation of metal mirrors on GaAs , 1996 .

[30]  Hiromi Oohashi,et al.  Study on the dominant mechanisms for the temperature sensitivity of threshold current in 1.3-/spl mu/m InP-based strained-layer quantum-well lasers , 1996 .

[31]  K. Streubel,et al.  Submilliamp long wavelength vertical cavity lasers , 1996, Conference Digest. 15th IEEE International Semiconductor Laser Conference.

[32]  Yoshio Itoh,et al.  1.55 /spl mu/m vertical-cavity surface-emitting lasers with wafer-fused InGaAsP/lnP-GaAs/AlAs DBRs , 1996 .

[33]  J. Bowers,et al.  Fabrication and characteristics of double-fused vertical-cavity lasers , 1996 .

[34]  S. Uchiyama,et al.  Continuous-Wave Operation Up to 36/spl deg/c of 1.3-/spl mu/m GaInAsP/InP Strained-Layer Multi-quantum-Wells Surface-Emitting Laser , 1996 .

[35]  John E. Bowers,et al.  Silicon heterointerface photodetector , 1996 .

[36]  J. Oudar,et al.  Submilliwatt optical bistability in wafer fused vertical cavity at 1.55-μm wavelength , 1996, IEEE Photonics Technology Letters.

[37]  K. Streubel,et al.  Single-mode, 1 Gb/s operation of double-fused vertical-cavity lasers at 1.54 μm , 1996, IEEE Photonics Technology Letters.

[38]  J. Bowers,et al.  Numerical analysis of 1.54 μm double‐fused vertical‐cavity lasers operating continuous‐wave up to 33 °C , 1996 .

[39]  Y. Okuno Investigation on direct bonding of III–V semiconductor wafers with lattice mismatch and orientation mismatch , 1996 .

[40]  John E. Bowers,et al.  1.55 /spl mu/m vertical cavity laser transmission over 200 km at 622 Mbit/s , 1996 .

[41]  John E. Bowers,et al.  Laterally oxidized long wavelength CW vertical- cavity lasers , 1996 .

[42]  R. Schneider,et al.  Uniparabolic mirror grading for vertical cavity surface emitting lasers , 1996 .

[43]  J. Bowers,et al.  Wafer Fusion for Surface-Normal Optoelectronic Device Applications , 1997 .

[44]  John E. Bowers,et al.  Simulation and analysis of 1.55 μm double-fused vertical-cavity lasers , 1997 .