Seasonal genetic partitioning in the neotropical malaria vector, Anopheles darlingi

[1]  P. Salgueiro,et al.  Seasonal genetic partitioning in the neotropical malaria vector, Anopheles darlingi , 2014, Malaria Journal.

[2]  J. Patz,et al.  Influence of Deforestation, Logging, and Fire on Malaria in the Brazilian Amazon , 2014, PloS one.

[3]  Francisco Prosdocimi,et al.  The Genome of Anopheles darlingi, the main neotropical malaria vector , 2013, Nucleic acids research.

[4]  J. Pinto,et al.  Distribution and hybridization of Culex pipiens forms in Greece during the West Nile virus outbreak of 2010. , 2013, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[5]  H. Ranson,et al.  Resistance to DDT in an Urban Setting: Common Mechanisms Implicated in Both M and S Forms of Anopheles gambiae in the City of Yaoundé Cameroon , 2013, PloS one.

[6]  R. Hunt,et al.  Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex. , 2013, Zootaxa.

[7]  N. Besansky,et al.  Anthropogenic Habitat Disturbance and Ecological Divergence between Incipient Species of the Malaria Mosquito Anopheles gambiae , 2012, PloS one.

[8]  Theunis Piersma,et al.  The interplay between habitat availability and population differentiation , 2012 .

[9]  B. vonHoldt,et al.  STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method , 2012, Conservation Genetics Resources.

[10]  J. Dinis,et al.  Asymmetric introgression between the M and S forms of the malaria vector, Anopheles gambiae, maintains divergence despite extensive hybridization , 2011, Molecular ecology.

[11]  Hélène Hiwat,et al.  Ecology of Anopheles darlingi Root with respect to vector importance: a review , 2011, Parasites & Vectors.

[12]  P. Ribolla,et al.  Population dynamics, structure and behavior of Anopheles darlingi in a rural settlement in the Amazon rainforest of Acre, Brazil , 2011, Malaria Journal.

[13]  Jody Hey,et al.  Divergence with Gene Flow: Models and Data , 2010 .

[14]  Caroline W. Kabaria,et al.  The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis , 2010, Parasites & Vectors.

[15]  A. James,et al.  Complete mtDNA genomes of Anopheles darlingi and an approach to anopheline divergence time , 2010, Malaria Journal.

[16]  P. Salgueiro,et al.  Asymmetric introgression between sympatric molestus and pipiens forms of Culex pipiens (Diptera: Culicidae) in the Comporta region, Portugal , 2009, BMC Evolutionary Biology.

[17]  P. M. Pedro,et al.  Spatial expansion and population structure of the neotropical malaria vector, Anopheles darlingi (Diptera: Culicidae) , 2009 .

[18]  G. Glass,et al.  Linking deforestation to malaria in the Amazon: characterization of the breeding habitat of the principal malaria vector, Anopheles darlingi. , 2009, The American journal of tropical medicine and hygiene.

[19]  N. Besansky,et al.  Ecological niche partitioning between Anopheles gambiae molecular forms in Cameroon: the ecological side of speciation , 2009, BMC Ecology.

[20]  J. Andersen,et al.  The salivary gland transcriptome of the neotropical malaria vector Anopheles darlingi reveals accelerated evolution of genes relevant to hematophagy , 2009, BMC Genomics.

[21]  E. Bermingham,et al.  Species Composition and Distribution of AdultAnopheles(Diptera: Culicidae) in Panama , 2008 .

[22]  E. Bermingham,et al.  Species Composition and Distribution of Adult Anopheles (Diptera: Culicidae) in Panama , 2008, Journal of medical entomology.

[23]  Patrik Nosil,et al.  Speciation with gene flow could be common , 2008, Molecular ecology.

[24]  F. Rousset genepop’007: a complete re‐implementation of the genepop software for Windows and Linux , 2008, Molecular ecology resources.

[25]  Lisa Mirabello,et al.  Microsatellite data suggest significant population structure and differentiation within the malaria vector Anopheles darlingi in Central and South America , 2008, BMC Ecology.

[26]  J. Crawford,et al.  Evidence for divergent selection between the molecular forms of Anopheles gambiae: role of predation , 2008, BMC Evolutionary Biology.

[27]  P. Ribolla,et al.  Population structure of the malaria vector Anopheles darlingi in Rondônia, Brazilian Amazon, based on mitochondrial DNA. , 2007, Memorias do Instituto Oswaldo Cruz.

[28]  Noah A. Rosenberg,et al.  CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure , 2007, Bioinform..

[29]  J. Conn,et al.  Population genetic structure of the major malaria vector Anopheles darlingi (Diptera: Culicidae) from the Brazilian Amazon, using microsatellite markers. , 2007, Memorias do Instituto Oswaldo Cruz.

[30]  P. Ribolla,et al.  Urban and suburban malaria in Rondônia (Brazilian Western Amazon) II. Perennial transmissions with high anopheline densities are associated with human environmental changes. , 2007, Memorias do Instituto Oswaldo Cruz.

[31]  Laurent Excoffier,et al.  Arlequin (version 3.0): An integrated software package for population genetics data analysis , 2005, Evolutionary bioinformatics online.

[32]  L. Mirabello,et al.  Molecular population genetics of the malaria vector Anopheles darlingi in Central and South America , 2006, Heredity.

[33]  Jonathan P. Bollback,et al.  Population structure of the malaria vector Anopheles darlingi in a malaria-endemic region of eastern Amazonian Brazil. , 2006, The American journal of tropical medicine and hygiene.

[34]  C. Peichel,et al.  Contrasting hybridization rates between sympatric three‐spined sticklebacks highlight the fragility of reproductive barriers between evolutionarily young species , 2006, Molecular ecology.

[35]  C. Primmer,et al.  Efficiency of model‐based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci , 2005, Molecular ecology.

[36]  Robert H Gilman,et al.  The effect of deforestation on the human-biting rate of Anopheles darlingi, the primary vector of Falciparum malaria in the Peruvian Amazon. , 2006, The American journal of tropical medicine and hygiene.

[37]  Angela Harris,et al.  Biting time of Anopheles darlingi in the Bolivian Amazon and implications for control of malaria. , 2006, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[38]  G. Evanno,et al.  Detecting the number of clusters of individuals using the software structure: a simulation study , 2005, Molecular ecology.

[39]  Marcel Tanner,et al.  Effect of irrigation and large dams on the burden of malaria on a global and regional scale. , 2005, The American journal of tropical medicine and hygiene.

[40]  S. Kalinowski hp-rare 1.0: a computer program for performing rarefaction on measures of allelic richness , 2005 .

[41]  Weltgesundheitsorganisation World malaria report , 2005 .

[42]  C. Oosterhout,et al.  Micro-Checker: Software for identifying and correcting genotyping errors in microsatellite data , 2004 .

[43]  M. Tada,et al.  Seasonal Malaria Transmission and Variation of Anopheline Density in Two Distinct Endemic Areas in Brazilian Amazônia , 2003, Journal of medical entomology.

[44]  C. Schlichting,et al.  Malaria Vectors, Epidemiology, and the Re-Emergence of Anopheles darlingi in Belém, Pará, Brazil , 2003, Journal of medical entomology.

[45]  R. Souza-Santos [Seasonal distribution of malaria vectors in Machadinho d'Oeste, Rondônia State, Amazon Region, Brazil]. , 2002, Cadernos de saude publica.

[46]  E. Thompson,et al.  A model-based method for identifying species hybrids using multilocus genetic data. , 2002, Genetics.

[47]  J. Bollback,et al.  Isolation of polymorphic microsatellite markers from the malaria vector Anopheles darlingi , 2001 .

[48]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[49]  W. Tadei,et al.  Intrapopulational genetic differentiation in Anopheles (N.) darlingi Root, 1926 (Diptera: Culicidae) in the amazon region , 1999 .

[50]  G. Luikart,et al.  Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data , 1999 .

[51]  Y. Rubio-Palis,et al.  Population structure of the primary malaria vector in South America, Anopheles darlingi, using isozyme, random amplified polymorphic DNA, internal transcribed spacer 2, and morphologic markers. , 1999, The American journal of tropical medicine and hygiene.

[52]  J. Conn Systematics and population level analysis of Anopheles darlingi. , 1998, Memorias do Instituto Oswaldo Cruz.

[53]  Y. Wataya,et al.  Identification of the four species of human malaria parasites by nested PCR that targets variant sequences in the small subunit rRNA gene , 1997 .

[54]  J M Cornuet,et al.  Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. , 1996, Genetics.

[55]  J. Charlwood,et al.  Biological variation in Anopheles darlingi Root. , 1996, Memorias do Instituto Oswaldo Cruz.

[56]  J. Goudet FSTAT (Version 1.2): A Computer Program to Calculate F-Statistics , 1995 .

[57]  François Rousset,et al.  GENEPOP (version 1.2): population genetic software for exact tests and ecumenicism , 1995 .

[58]  O. P. Forattini,et al.  Principais mosquitos de importância sanitária no Brasil , 1995 .

[59]  Rotraut A. G. B. Consoli,et al.  Principais mosquitos de importância sanitária no Brasil , 1994 .

[60]  L. Excoffier,et al.  Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. , 1992, Genetics.

[61]  B. Weir,et al.  ESTIMATING F‐STATISTICS FOR THE ANALYSIS OF POPULATION STRUCTURE , 1984, Evolution; international journal of organic evolution.

[62]  J. Charlwood Observations on the bionomics of Anopheles darlingi Root (Diptera: Culicidae) from Brazil. , 1980 .

[63]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .