Fate and potentialities of the avian mesencephalic/metencephalic neuroepithelium.

[1]  N. Perrimon,et al.  The orthodenticle gene encodes a novel homeo domain protein involved in the development of the Drosophila nervous system and ocellar visual structures. , 1990, Genes & development.

[2]  S. Vaage The segmentation of the primitive neural tube in chick embryos (Gallus domesticus). A morphological, histochemical and autoradiographical investigation. , 1969, Ergebnisse der Anatomie und Entwicklungsgeschichte.

[3]  S. Takagi,et al.  The Prosencephalon Has the Capacity to Differentiate into the Optic Tectum: Analysis by Chick‐Specific Monoclonal Antibodies in Quail‐Chick‐Chimeric Brains , 1988, Development, growth & differentiation.

[4]  A. Joyner,et al.  Expression of the homeo box-containing gene En-2 delineates a specific region of the developing mouse brain. , 1988, Genes & development.

[5]  P. O’Farrell,et al.  Multiple modes of engrailed regulation in the progression towards cell fate determination , 1991, Nature.

[6]  R. Krumlauf,et al.  Neuroectodermal autonomy of Hox-2.9 expression revealed by rhombomere transpositions , 1992, Nature.

[7]  C. Lagenaur,et al.  A new marker for identifying quail cells in embryonic avian chimeras: a quail-specific antiserum. , 1987, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[8]  V. Hamburger,et al.  A series of normal stages in the development of the chick embryo. 1951. , 2012, Developmental dynamics : an official publication of the American Association of Anatomists.

[9]  Mario R. Capecchi,et al.  Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development , 1990, Nature.

[10]  M. Frohman,et al.  Isolation of the mouse Hox-2.9 gene; analysis of embryonic expression suggests that positional information along the anterior-posterior axis is specified by mesoderm. , 1990, Development.

[11]  A. Joyner,et al.  Expression patterns of the homeo box-containing genes En-1 and En-2 and the proto-oncogene int-1 diverge during mouse development. , 1988, Genes & development.

[12]  B. Schryver,et al.  Secreted int-1 protein is associated with the cell surface. , 1990, Molecular and cellular biology.

[13]  Henry Orr,et al.  Contribution to the embryology of the lizard; With especial reference to the central nervous system and some organs of the head; together with observations on the origin of the vertebrates , 1887 .

[14]  H. Nakamura,et al.  Establishment of rostrocaudal polarity in tectal primordium: engrailed expression and subsequent tectal polarity. , 1991, Development.

[15]  A. Brivanlou,et al.  Expression of an engrailed-related protein is induced in the anterior neural ectoderm of early Xenopus embryos. , 1989, Development.

[16]  M. Wassef,et al.  Induction of a mesencephalic phenotype in the 2-day-old chick prosencephalon is preceded by the early expression of the homeobox gene en , 1991, Neuron.

[17]  M E Hallonet,et al.  A new approach to the development of the cerebellum provided by the quail-chick marker system. , 1990, Development.

[18]  M. Wassef,et al.  Relationship between Wnt-1 and En-2 expression domains during early development of normal and ectopic met-mesencephalon. , 1992, Development.

[19]  C. Sotelo,et al.  Homotopic and heterotopic transplantations of quail tectal primordia in chick embryos: organization of the retinotectal projections in the chimeric embryos. , 1984, Developmental biology.

[20]  A. Joyner,et al.  The midbrain-hindbrain phenotype of Wnt-1− Wnt-1− mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum , 1992, Cell.

[21]  R. Keynes,et al.  Segmental patterns of neuronal development in the chick hindbrain , 1989, Nature.

[22]  S. Martinez,et al.  Expression of the homeobox Chick-en gene in chick/quail chimeras with inverted mes-metencephalic grafts. , 1990, Developmental biology.

[23]  P. Lawrence,et al.  Distribution of the wingless gene product in drosophila embryos: A protein involved in cell-cell communication , 1989, Cell.

[24]  Detlef Weigel,et al.  The Drosophila homology of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless , 1987, Cell.

[25]  M. Westerfield,et al.  Diversity of expression of engrailed-like antigens in zebrafish. , 1991, Development.

[26]  Peter Gruss,et al.  Pax in development , 1992, Cell.

[27]  C. Sotelo,et al.  Chick/quail chimeras with partial cerebellar grafts: An analysis of the origin and migration of cerebellar cells , 1993, The Journal of comparative neurology.

[28]  A. McMahon,et al.  Expression of the proto-oncogene int-1 is restricted to specific neural cells in the developing mouse embryo , 1987, Cell.

[29]  M. Capecchi,et al.  Swaying is a mutant allele of the proto-oncogene Wnt-1 , 1991, Cell.

[30]  S. Paul,et al.  Expression of tyrosine hydroxylase in cerebellar Purkinje neurons of the mutant tottering and leaner mouse. , 1992, Brain research. Molecular brain research.

[31]  A. Molven,et al.  A zebrafish engrailed‐like homeobox sequence expressed during embryogenesis , 1988, FEBS letters.

[32]  Andrew P. McMahon,et al.  The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain , 1990, Cell.

[33]  S. Martinez,et al.  Pluripotentiality of the 2-day-old avian germinative neuroepithelium. , 1990, Developmental biology.

[34]  M. Gulisano,et al.  Nested expression domains of four homeobox genes in developing rostral brain , 1992, Nature.

[35]  K. G. Coleman,et al.  Expression of engrailed proteins in arthropods, annelids, and chordates , 1989, Cell.

[36]  A. Joyner,et al.  Cloning and sequence comparison of the mouse, human, and chicken engrailed genes reveal potential functional domains and regulatory regions. , 1992, Developmental genetics.

[37]  R. Feulgren,et al.  Mikroskopisch-chemischer Nachweis einer Nucleinsäure vom Typus der Thymonucleinsäure und die- darauf beruhende elektive Färbung von Zellkernen in mikroskopischen Präparaten. , 1924 .

[38]  E. D. De Robertis,et al.  Neural induction and regionalisation in the chick embryo. , 1992, Development.

[39]  S. Fraser,et al.  Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions , 1990, Nature.

[40]  H. Nakamura,et al.  Plasticity and rigidity of differentiation of brain vesicles studied in quail-chick chimeras. , 1986, Cell differentiation.

[41]  A. Brown,et al.  The proto‐oncogene int‐1 encodes a secreted protein associated with the extracellular matrix. , 1990, The EMBO journal.

[42]  C. A. Gardner,et al.  The cellular environment controls the expression of engrailed-like protein in the cranial neuroepithelium of quail-chick chimeric embryos. , 1991, Development.

[43]  Harukazu Nakamura Do CNS anlagen have plasticity in differentiation? Analysis in quail-chick chimera , 1990, Brain Research.

[44]  S. Martinez,et al.  Rostral Cerebellum Originates from the Caudal Portion of the So‐Called ‘Mesencephalic’ Vesicle: A Study Using Chick/Quail Chimeras , 1989, The European journal of neuroscience.

[45]  S. Krauss,et al.  Expression of the zebrafish paired box gene pax[zf-b] during early neurogenesis. , 1991, Development.

[46]  C. A. Gardner,et al.  Expression of an engrailed‐like gene during development of the early embryonic chick nervous system , 1988, Journal of neuroscience research.

[47]  Judith A. Kassis,et al.  Two-tiered regulation of spatially patterned engrailed gene expression during Drosophila embryogenesis , 1988, Nature.