Approximation with continuous functions preserving fractal dimensions of the Riemann-Liouville operators of fractional calculus

[1]  Binyan Yu,et al.  Construction of Monotonous Approximation by Fractal Interpolation Functions and Fractal Dimensions , 2023, Fractals.

[2]  A. Priyadarshi,et al.  Dimensions of new fractal functions and associated measures , 2023, Numerical Algorithms.

[3]  Y. S. Liang,et al.  Fractal dimension variation of continuous functions under certain operations , 2023, Fractals.

[4]  Saurabh Verma,et al.  Analytical and dimensional properties of fractal interpolation functions on the Sierpiński gasket , 2023, Fractional Calculus and Applied Analysis.

[5]  Yongshun Liang,et al.  On the Lower and Upper Box Dimensions of the Sum of Two Fractal Functions , 2022, Fractal and Fractional.

[6]  Yongshun Liang,et al.  Estimation of the Fractal Dimensions of the Linear Combination of Continuous Functions , 2022, Mathematics.

[7]  Y. S. Liang Approximation with fractal functions by fractal dimension , 2022, Fractals.

[8]  Saurabh Verma,et al.  Vector-valued fractal functions: Fractal dimension and fractional calculus , 2022, Indagationes Mathematicae.

[9]  S. Abbas,et al.  Analysis of fractal dimension of mixed Riemann-Liouville integral , 2022, Numerical Algorithms.

[10]  A. Priyadarshi,et al.  Graphs of continuous functions and fractal dimensions , 2022, Chaos, Solitons & Fractals.

[11]  Y. S. Liang Approximation of the same Box dimension in continuous functions space , 2021, Fractals.

[12]  Zdzisław Denkowski,et al.  Set-Valued Analysis , 2021 .

[13]  Syed Abbas,et al.  Box dimension of mixed Katugampola fractional integral of two-dimensional continuous functions , 2021, Fractional Calculus and Applied Analysis.

[14]  Junru Wu,et al.  On a linearity between fractal dimension and order of fractional calculus in Hölder space , 2020, Appl. Math. Comput..

[15]  Bin Wang,et al.  THE RELATIONSHIP BETWEEN FRACTAL DIMENSIONS OF BESICOVITCH FUNCTION AND THE ORDER OF HADAMARD FRACTIONAL INTEGRAL , 2020 .

[16]  Xuefei Wang,et al.  FRACTAL DIMENSIONS OF LINEAR COMBINATION OF CONTINUOUS FUNCTIONS WITH THE SAME BOX DIMENSION , 2020 .

[17]  Jun-De Wu THE EFFECTS OF THE RIEMANN–LIOUVILLE FRACTIONAL INTEGRAL ON THE BOX DIMENSION OF FRACTAL GRAPHS OF HÖLDER CONTINUOUS FUNCTIONS , 2020 .

[18]  P. Massopust,et al.  Dimension preserving approximation , 2020, Aequationes mathematicae.

[19]  N. Vijender Bernstein Fractal Trigonometric Approximation , 2019 .

[20]  Yongshun Liang Fractal dimension of Riemann-Liouville fractional integral of 1-dimensional continuous functions , 2018, Fractional Calculus and Applied Analysis.

[21]  F. Mainardi Fractional Calculus , 2018, Fractional Calculus.

[22]  Yang Li,et al.  FRACTAL DIMENSION OF RIEMANN–LIOUVILLE FRACTIONAL INTEGRAL OF CERTAIN UNBOUNDED VARIATIONAL CONTINUOUS FUNCTION , 2017 .

[23]  苏维宜,et al.  Riemann-Liouville fractional calculus of 1-dimensional continuous functions , 2016 .

[24]  M. Navascués,et al.  Associate fractal functions in Lp-spaces and in one-sided uniform approximation , 2016 .

[25]  W. Shen Hausdorff dimension of the graphs of the classical Weierstrass functions , 2015, 1505.03986.

[26]  Ping Zhou,et al.  On the approximation by operators of Bernstein-Stancu types , 2014, Appl. Math. Comput..

[27]  Qi S. Zhang,et al.  Some remarks on one-dimensional functions and their Riemann-Liouville fractional calculus , 2014 .

[28]  Jürgen Kurths,et al.  Fractional calculus and its applications , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  Krzysztof Barański On the dimension of graphs of Weierstrass-type functions with rapidly growing frequencies , 2011, 1105.4960.

[30]  Sorin G. Gal,et al.  Shape-Preserving Approximation by Real and Complex Polynomials , 2008 .

[31]  Y. S. Liang,et al.  The relationship between the Box dimension of the Besicovitch functions and the orders of their fractional calculus , 2008, Appl. Math. Comput..

[32]  Y. S. Liang,et al.  The relationship between the fractal dimensions of a type of fractal functions and the order of their fractional calculus , 2007 .

[33]  S. Zhou,et al.  On a class of fractal functions with graph Hausdorff dimension 2 , 2007 .

[34]  Kui Yao,et al.  The Fractional Derivatives of a Fractal Function , 2006 .

[35]  George A. Anastassiou,et al.  Shape preserving approximation in vector ordered spaces , 2005, Appl. Math. Lett..

[36]  S. Zhou,et al.  What is the exact condition for fractional integrals and derivatives of Besicovitch functions to have exact box dimension , 2005 .

[37]  S. Zhou,et al.  On a class of Besicovitch functions to have exact box dimension: A necessary and sufficient condition , 2005 .

[38]  S. Zhou,et al.  On a class of fractal functions with graph Box dimension 2 , 2004 .

[39]  S. Zhou,et al.  On a class of fractals: the constructive structure , 2004 .

[40]  M. Zähle,et al.  Fractional derivatives of Weierstrass-type functions , 1996 .

[41]  P. Massopust Fractal Functions, Fractal Surfaces, and Wavelets , 1995 .

[42]  V. Totik APPROXIMATION BY BERNSTEIN POLYNOMIALS , 1994 .

[43]  Xinlong Zhou,et al.  The Lower Estimate for Linear Positive Operators (II) , 1994 .

[44]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[45]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[46]  Dansheng Yu,et al.  On approximation of Bernstein-Durrmeyer-type operators in movable interval , 2021, Filomat.

[47]  A. Bressan Lecture Notes in Functional Analysis , 2012 .

[48]  M. Navascués Fractal Approximation , 2010 .

[49]  Weiyi Su,et al.  On the connection between the order of fractional calculus and the dimensions of a fractal function , 2005 .

[50]  M. A. Navascues,et al.  Fractal trigonometric approximation. , 2005 .

[51]  Brian R. Hunt,et al.  The Hausdorff dimension of graphs of Weierstrass functions , 1998 .

[52]  K. Falconer Techniques in fractal geometry , 1997 .