Information fusion as an integrative cross-cutting enabler to achieve robust, explainable, and trustworthy medical artificial intelligence

[1]  Yonatan Belinkov,et al.  On Adversarial Removal of Hypothesis-only Bias in Natural Language Inference , 2019, *SEMEVAL.

[2]  T. Poggio,et al.  General conditions for predictivity in learning theory , 2004, Nature.

[3]  Andreas Holzinger,et al.  Trends in Interactive Knowledge Discovery for Personalized Medicine: Cognitive Science meets Machine Learning , 2014, IEEE Intell. Informatics Bull..

[4]  W. Lam,et al.  Differentially expressed microRNAs in lung adenocarcinoma invert effects of copy number aberrations of prognostic genes , 2018, Oncotarget.

[5]  Ruocheng Guo,et al.  Causal Interpretability for Machine Learning - Problems, Methods and Evaluation , 2020, SIGKDD Explor..

[6]  Yongtang Shi,et al.  Quantitative Graph Theory: A new branch of graph theory and network science , 2017, Inf. Sci..

[7]  Julius von Kügelgen,et al.  Algorithmic recourse under imperfect causal knowledge: a probabilistic approach , 2020, NeurIPS.

[8]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[9]  Igor Jurisica,et al.  In silico prediction of physical protein interactions and characterization of interactome orphans , 2014, Nature Methods.

[10]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[11]  Byron C. Wallace,et al.  ERASER: A Benchmark to Evaluate Rationalized NLP Models , 2019, ACL.

[12]  Wojciech Samek,et al.  Clustered Federated Learning: Model-Agnostic Distributed Multitask Optimization Under Privacy Constraints , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[13]  Andreas Holzinger,et al.  Interactive machine learning for health informatics: when do we need the human-in-the-loop? , 2016, Brain Informatics.

[14]  Elias Bareinboim,et al.  Transportability of Causal and Statistical Relations: A Formal Approach , 2011, 2011 IEEE 11th International Conference on Data Mining Workshops.

[15]  Igor Jurisica,et al.  Efficient estimation of graphlet frequency distributions in protein-protein interaction networks , 2006, Bioinform..

[16]  V. McKusick Mendelian Inheritance in Man and Its Online Version, OMIM , 2007, The American Journal of Human Genetics.

[17]  Javier Del Ser,et al.  Plausible Counterfactuals: Auditing Deep Learning Classifiers with Realistic Adversarial Examples , 2020, 2020 International Joint Conference on Neural Networks (IJCNN).

[18]  Ivan Oseledets,et al.  Empirical study of extreme overfitting points of neural networks , 2019, ArXiv.

[19]  Pierre Vandergheynst,et al.  Geometric Deep Learning: Going beyond Euclidean data , 2016, IEEE Signal Process. Mag..

[20]  Leslie G. Valiant,et al.  Projection Learning , 1998, COLT' 98.

[21]  Daniel A. Keim,et al.  Why Visualize? Arguments for Visual Support in Decision Making , 2021, IEEE Computer Graphics and Applications.

[22]  Ute Schmid,et al.  The Next Generation of Medical Decision Support: A Roadmap Toward Transparent Expert Companions , 2020, Frontiers in Artificial Intelligence.

[23]  Wouter M. Kouw,et al.  Back to the Future - Sequential Alignment of Text Representations , 2019, ArXiv.

[24]  Igor Jurisica,et al.  Inferring the functions of longevity genes with modular subnetwork biomarkers of Caenorhabditis elegans aging , 2010, Genome Biology.

[25]  Paul A. Bates,et al.  Global topological features of cancer proteins in the human interactome , 2006, Bioinform..

[26]  Hsuan-Cheng Huang,et al.  Predicting essential genes based on network and sequence analysis. , 2009, Molecular bioSystems.

[27]  Andreas Holzinger,et al.  Legal, regulatory, and ethical frameworks for development of standards in artificial intelligence (AI) and autonomous robotic surgery , 2019, The international journal of medical robotics + computer assisted surgery : MRCAS.

[28]  Alexander Binder,et al.  On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation , 2015, PloS one.

[29]  Philip S. Yu,et al.  Private Model Compression via Knowledge Distillation , 2018, AAAI.

[30]  R. Saravana Kumar,et al.  A SURVEY OF AI IMAGING TECHNIQUES FOR COVID-19 DIAGNOSIS AND PROGNOSIS , 2021, Applied Computer Science.

[31]  M. Gerstein,et al.  Relating whole-genome expression data with protein-protein interactions. , 2002, Genome research.

[32]  Josh Veitch-Michaelis,et al.  Learnings from Frontier Development Lab and SpaceML - AI Accelerators for NASA and ESA , 2020, ArXiv.

[33]  L. Gallo Cardiovascular Disease , 1995, GWUMC Department of Biochemistry Annual Spring Symposia.

[34]  Amit N. Patel,et al.  Cardiovascular Disease, Drug Therapy, and Mortality in Covid-19 , 2020, The New England journal of medicine.

[35]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[36]  J. Shawe-Taylor,et al.  Toward AI Systems that Augment and Empower Humans by Understanding Us , our Society and the World Around Us , 2019 .

[37]  Julie M. Sahalie,et al.  An experimentally derived confidence score for binary protein-protein interactions , 2008, Nature Methods.

[38]  Byron C. Wallace,et al.  Attention is not Explanation , 2019, NAACL.

[39]  Ian Goodfellow,et al.  Generative adversarial networks , 2020, Commun. ACM.

[40]  Bo Wang,et al.  Machine Learning for Integrating Data in Biology and Medicine: Principles, Practice, and Opportunities , 2018, Inf. Fusion.

[41]  Isabelle Augenstein,et al.  TX-Ray: Quantifying and Explaining Model-Knowledge Transfer in (Un-)Supervised NLP , 2019, UAI.

[42]  A. Ignatchenko,et al.  Comparative systems biology of human and mouse as a tool to guide the modeling of human placental pathology , 2009, Molecular systems biology.

[43]  Raja Chatila,et al.  Towards Explainable Neural-Symbolic Visual Reasoning , 2019, NeSy@IJCAI.

[44]  Natalia Díaz Rodríguez,et al.  Explainability in Deep Reinforcement Learning , 2020, Knowl. Based Syst..

[45]  Victor S. Lempitsky,et al.  Unsupervised Domain Adaptation by Backpropagation , 2014, ICML.

[46]  Vicky Charisi,et al.  Should artificial agents ask for help in human-robot collaborative problem-solving? , 2020, ArXiv.

[47]  Xia Hu,et al.  Adversarial Machine Learning: An Interpretation Perspective , 2020, ArXiv.

[48]  M. Dehmer,et al.  Analysis of Microarray Data: A Network-Based Approach , 2008 .

[49]  Andreas Holzinger,et al.  Usability engineering methods for software developers , 2005, CACM.

[50]  Francisco Herrera,et al.  Deep Learning in Omics Data Analysis and Precision Medicine , 2019, Computational Biology.

[51]  Klaus-Robert Müller,et al.  Robust and Communication-Efficient Federated Learning From Non-i.i.d. Data , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[52]  Yee Whye Teh,et al.  How Robust are the Estimated Effects of Nonpharmaceutical Interventions against COVID-19? , 2020, NeurIPS.

[53]  Igor Jurisica,et al.  mirDIP 4.1—integrative database of human microRNA target predictions , 2017, Nucleic Acids Res..

[54]  Thomas G. Dietterich,et al.  A Unifying Review of Deep and Shallow Anomaly Detection , 2020, Proceedings of the IEEE.

[55]  Shinichiro Wachi,et al.  Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues , 2005, Bioinform..

[56]  N Del-Toro,et al.  The IMEx Coronavirus interactome: an evolving map of Coronaviridae-Host molecular interactions , 2020, bioRxiv.

[57]  Ana Paiva,et al.  Explainable Agents Through Social Cues: A Review , 2020, ArXiv.

[58]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[59]  Igor Jurisica,et al.  Protein complex prediction via cost-based clustering , 2004, Bioinform..

[60]  M. Oquab,et al.  Back-to-back regression: Disentangling the influence of correlated factors from multivariate observations , 2020, NeuroImage.

[61]  Juancarlos Chan,et al.  Gene Ontology Consortium: going forward , 2014, Nucleic Acids Res..

[62]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[63]  Oliver Y. Chén,et al.  Big Data in Omics and Imaging: Integrated Analysis and Causal Inference. , 2020 .

[64]  Sriraam Natarajan,et al.  Causal Learning From Predictive Modeling for Observational Data , 2020, Frontiers in Big Data.

[65]  Cuntai Guan,et al.  A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[66]  Chunhua Wang,et al.  Machine Learning and Deep Learning Methods for Cybersecurity , 2018, IEEE Access.

[67]  Yongtang Shi,et al.  Fifty years of graph matching, network alignment and network comparison , 2016, Inf. Sci..

[68]  Aaron Kershenbaum,et al.  Lasting impressions: motifs in protein-protein maps may provide footprints of evolutionary events. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[69]  A. Balaban,et al.  Topological Indices and Related Descriptors in QSAR and QSPR , 2003 .

[70]  Christian Biemann,et al.  Adversarial Learning of Privacy-Preserving Text Representations for De-Identification of Medical Records , 2019, ACL.

[71]  Cathy H. Wu,et al.  The Universal Protein Resource (UniProt) , 2004, Nucleic Acids Res..

[72]  M. Pellegrini,et al.  Capturing variation impact on molecular interactions in the IMEx Consortium mutations data set , 2019, Nature Communications.

[73]  I. Jurisica,et al.  Unequal evolutionary conservation of human protein interactions in interologous networks , 2007, Genome Biology.

[74]  David F. Steiner,et al.  Chest Radiograph Interpretation with Deep Learning Models: Assessment with Radiologist-adjudicated Reference Standards and Population-adjusted Evaluation. , 2019, Radiology.

[75]  N. Elzein The demand for contrastive explanations , 2019 .

[76]  Daniel C. Castro,et al.  Causality matters in medical imaging , 2019, Nature Communications.

[77]  Wafae Bakkali,et al.  Questioning causality on sex, gender and COVID-19, and identifying bias in large-scale data-driven analyses: the Bias Priority Recommendations and Bias Catalog for Pandemics , 2021, ArXiv.

[78]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[79]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[80]  Regina Barzilay,et al.  Rationalizing Neural Predictions , 2016, EMNLP.

[81]  H. Chitsaz,et al.  DeePathology: Deep Multi-Task Learning for Inferring Molecular Pathology from Cancer Transcriptome , 2018, Scientific Reports.

[82]  Javier Del Ser,et al.  Deep Learning for Safe Autonomous Driving: Current Challenges and Future Directions , 2020, IEEE Transactions on Intelligent Transportation Systems.

[83]  G. Nuovo,et al.  A mechanistic analysis placental intravascular thrombus formation in COVID-19 patients , 2020, Annals of Diagnostic Pathology.

[84]  Shie Mannor,et al.  Robustness and generalization , 2010, Machine Learning.

[85]  Daniel C. Castro,et al.  Deep Structural Causal Models for Tractable Counterfactual Inference , 2020, NeurIPS.

[86]  Isabelle Augenstein,et al.  Generating Label Cohesive and Well-Formed Adversarial Claims , 2020, EMNLP.

[87]  Z. Fayad,et al.  Artificial intelligence–enabled rapid diagnosis of patients with COVID-19 , 2020, Nature Medicine.

[88]  Chris Russell,et al.  Counterfactual Explanations Without Opening the Black Box: Automated Decisions and the GDPR , 2017, ArXiv.

[89]  Alexander Binder,et al.  Unmasking Clever Hans predictors and assessing what machines really learn , 2019, Nature Communications.

[90]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[91]  Johan Lilius,et al.  An Ontology for Wearables Data Interoperability and Ambient Assisted Living Application Development , 2016, WCSC.

[92]  Ananthram Swami,et al.  Practical Black-Box Attacks against Machine Learning , 2016, AsiaCCS.

[93]  Elisabet Barrera,et al.  Towards a unified open access dataset of molecular interactions , 2020, Nature Communications.

[94]  André M. Carrington,et al.  Measuring the Quality of Explanations: The System Causability Scale (SCS) , 2019, KI - Künstliche Intelligenz.

[95]  Natasa Przulj,et al.  High-Throughput Mapping of a Dynamic Signaling Network in Mammalian Cells , 2005, Science.

[96]  Benjamin Haibe-Kains,et al.  Why imaging data alone is not enough: AI-based integration of imaging, omics, and clinical data , 2019, European Journal of Nuclear Medicine and Molecular Imaging.

[97]  Andreas Holzinger,et al.  The European Legal Framework for Medical AI , 2020, CD-MAKE.

[98]  Neema Kotonya,et al.  Explainable Automated Fact-Checking: A Survey , 2020, COLING.

[99]  Jakob Grue Simonsen,et al.  Generating Fact Checking Explanations , 2020, ACL.

[100]  Karsten M. Borgwardt,et al.  Early prediction of circulatory failure in the intensive care unit using machine learning , 2020, Nature Medicine.

[101]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[102]  V. Lakshminarayanan,et al.  What is the Optimal Attribution Method for Explainable Ophthalmic Disease Classification? , 2020, OMIA@MICCAI.

[103]  Christos Faloutsos,et al.  Modeling tumor progression via the comparison of stage-specific graphs. , 2018, Methods.

[104]  Werner Dubitzky,et al.  Deep learning in bioinformatics and biomedicine , 2021, Briefings Bioinform..

[105]  The UniProt Consortium,et al.  The Universal Protein Resource (UniProt) 2009 , 2008, Nucleic Acids Res..

[106]  Petra Koenig,et al.  Information Theoretic Indices For Characterization Of Chemical Structures , 2016 .

[107]  Horst Bunke,et al.  Recent developments in graph matching , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[108]  Igor Jurisica,et al.  IID 2018 update: context-specific physical protein–protein interactions in human, model organisms and domesticated species , 2018, Nucleic Acids Res..

[109]  S. Wuchty Topology and weights in a protein domain interaction network – a novel way to predict protein interactions , 2006, BMC Genomics.

[110]  Georg Langs,et al.  Causability and explainability of artificial intelligence in medicine , 2019, WIREs Data Mining Knowl. Discov..

[111]  Nikola Simidjievski,et al.  Improving Interpretability in Medical Imaging Diagnosis using Adversarial Training , 2020, ArXiv.

[112]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[113]  Ning Wang,et al.  Changing cancer survival in China during 2003-15: a pooled analysis of 17 population-based cancer registries. , 2018, The Lancet. Global health.

[114]  Benno Schwikowski,et al.  Discovering regulatory and signalling circuits in molecular interaction networks , 2002, ISMB.

[115]  Manuel P. Cuéllar,et al.  A fuzzy ontology for semantic modelling and recognition of human behaviour , 2014, Knowl. Based Syst..

[116]  Matthew W. Hahn,et al.  Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. , 2005, Molecular biology and evolution.

[117]  R. Sharan,et al.  Network-based prediction of protein function , 2007, Molecular systems biology.

[118]  Yuanyuan Liu,et al.  Deep Feature Selection and Causal Analysis of Alzheimer’s Disease , 2019, Front. Neurosci..

[119]  Amit Dhurandhar,et al.  Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives , 2018, NeurIPS.

[120]  The Uniprot Consortium,et al.  UniProt: a hub for protein information , 2014, Nucleic Acids Res..

[121]  R. Akbani,et al.  Personalized Network Modeling of the Pan-Cancer Patient and Cell Line Interactome , 2019, bioRxiv.

[122]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[123]  Ali Hassan Sodhro,et al.  A multi-sensor data fusion enabled ensemble approach for medical data from body sensor networks , 2020, Inf. Fusion.

[124]  Leng Han,et al.  Gene co-expression network analysis reveals common system-level properties of prognostic genes across cancer types , 2014, Nature Communications.

[125]  Andreas Holzinger,et al.  Investigating Agile User-Centered Design in Practice: A Grounded Theory Perspective , 2009, USAB.

[126]  J. Blake,et al.  Creating the Gene Ontology Resource : Design and Implementation The Gene Ontology Consortium 2 , 2001 .

[127]  Gagandeep Singh,et al.  Generating Medical Reports from Patient-Doctor Conversations Using Sequence-to-Sequence Models , 2020, NLPMC.

[128]  Julia Powles,et al.  "Meaningful Information" and the Right to Explanation , 2017, FAT.

[129]  Serban Nacu,et al.  Gene expression network analysis and applications to immunology , 2007, Bioinform..

[130]  Daniel A. Keim,et al.  Visual analytics for concept exploration in subspaces of patient groups , 2016, Brain Informatics.

[131]  Andreas Holzinger,et al.  Toward Human–AI Interfaces to Support Explainability and Causability in Medical AI , 2021, Computer.

[132]  Gianclaudio Malgieri,et al.  Automated decision-making in the EU Member States: The right to explanation and other "suitable safeguards" in the national legislations , 2019, Comput. Law Secur. Rev..

[133]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[134]  Andreas Holzinger,et al.  Explainable AI and Multi-Modal Causability in Medicine , 2020, i-com.

[135]  Alexander M. Rush,et al.  Visual Interaction with Deep Learning Models through Collaborative Semantic Inference , 2019, IEEE Transactions on Visualization and Computer Graphics.

[136]  Igor Jurisica,et al.  Functional topology in a network of protein interactions , 2004, Bioinform..

[137]  Lina Yao,et al.  The Future of False Information Detection on Social Media , 2020, ACM Comput. Surv..

[138]  Minding the Machine v2.0: The EU General Data Protection Regulation and Automated Decision Making , 2019, SSRN Electronic Journal.

[139]  A. Barabasi,et al.  Network medicine : a network-based approach to human disease , 2010 .

[140]  D. Pe’er,et al.  Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data , 2003, Nature Genetics.

[141]  Q. Zou,et al.  Deep learning in omics: a survey and guideline , 2018, Briefings in functional genomics.

[142]  I. Jurisica,et al.  Failed immune responses across multiple pathologies share pan-tumor and circulating lymphocytic targets. , 2019, The Journal of clinical investigation.

[143]  Jun Zhu,et al.  Boosting Adversarial Attacks with Momentum , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[144]  Javier Del Ser,et al.  Deep Learning for Multigrade Brain Tumor Classification in Smart Healthcare Systems: A Prospective Survey , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[145]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[146]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[147]  Kumardeep Chaudhary,et al.  Deep Learning–Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer , 2017, Clinical Cancer Research.

[148]  Evert-Ben van Veen,et al.  The Ten Commandments of Ethical Medical AI , 2021, Computer.

[149]  A. Casadevall,et al.  Misconduct accounts for the majority of retracted scientific publications , 2012, Proceedings of the National Academy of Sciences.

[150]  Christian Biemann,et al.  Text: now in 2D! A framework for lexical expansion with contextual similarity , 2013, J. Lang. Model..

[151]  Nick Cercone,et al.  Comparative network analysis via differential graphlet communities , 2014, Proteomics.

[152]  Isaac S Kohane,et al.  Artificial Intelligence in Healthcare , 2019, Artificial Intelligence and Machine Learning for Business for Non-Engineers.

[153]  Yongtang Shi,et al.  On efficient network similarity measures , 2019, Appl. Math. Comput..

[154]  Hal Daumé,et al.  Frustratingly Easy Domain Adaptation , 2007, ACL.

[155]  John Blitzer,et al.  Domain Adaptation with Structural Correspondence Learning , 2006, EMNLP.

[156]  Alejandro Barredo Arrieta,et al.  Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI , 2019, Inf. Fusion.

[157]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[158]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[159]  Francisco Jesús Martínez-Murcia,et al.  Deep residual transfer learning for automatic diagnosis and grading of diabetic retinopathy , 2020, Neurocomputing.

[160]  Natalia Díaz-Rodríguez,et al.  Couch potato or gym addict ? Semantic lifestyle profiling with wearables and fuzzy knowledge graphs , 2017 .

[161]  G. Nuovo,et al.  Analysis of complement deposition and viral RNA in placentas of COVID-19 patients , 2020, Annals of Diagnostic Pathology.

[162]  Tiberiu T. Cocias,et al.  A survey of deep learning techniques for autonomous driving , 2019, J. Field Robotics.

[163]  Georg Gottlob,et al.  Enhancing Model Checking in Verification by AI Techniques , 1999, Artif. Intell..

[164]  Bettina Finzel,et al.  Mutual Explanations for Cooperative Decision Making in Medicine , 2020, KI - Künstliche Intelligenz.

[165]  Lan V. Zhang,et al.  Evidence for dynamically organized modularity in the yeast protein–protein interaction network , 2004, Nature.

[166]  David C. Kale,et al.  Do no harm: a roadmap for responsible machine learning for health care , 2019, Nature Medicine.

[167]  Marinka Zitnik,et al.  Data Fusion by Matrix Factorization , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[168]  David S. Melnick,et al.  International evaluation of an AI system for breast cancer screening , 2020, Nature.

[169]  Anna Saranti,et al.  Towards multi-modal causability with Graph Neural Networks enabling information fusion for explainable AI , 2021, Inf. Fusion.

[170]  I. Jurisica,et al.  Network-based characterization of drug-regulated genes, drug targets, and toxicity. , 2012, Methods.

[171]  Jakob Grue Simonsen,et al.  A Diagnostic Study of Explainability Techniques for Text Classification , 2020, EMNLP.

[172]  Isabelle Augenstein,et al.  Back to the Future - Temporal Adaptation of Text Representations , 2020, AAAI.

[173]  F. Cabitza,et al.  Unintended Consequences of Machine Learning in Medicine , 2017, JAMA.

[174]  Javier Del Ser,et al.  Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0 , 2019, Inf. Fusion.

[175]  Y. Gal,et al.  Identifying Causal Effect Inference Failure with Uncertainty-Aware Models , 2020, NeurIPS.

[176]  Paul Horton,et al.  Network-based de-noising improves prediction from microarray data , 2006, BMC Bioinformatics.

[177]  Russell Greiner,et al.  Learning to segment from a few well-selected training images , 2009, ICML '09.

[178]  A. Yuille,et al.  Bayesian generic priors for causal learning. , 2008, Psychological review.

[179]  I. Jurisica,et al.  Immune-enrichment of non-small cell lung cancer baseline biopsies for multiplex profiling define prognostic immune checkpoint combinations for patient stratification , 2019, Journal of Immunotherapy for Cancer.

[180]  I. Jurisica,et al.  Therapeutic Targeting of the Premetastatic Stage in Human Lung-to-Brain Metastasis. , 2018, Cancer research.

[181]  Isabelle Augenstein,et al.  Is Sparse Attention more Interpretable? , 2021, ACL.

[182]  P. Alam ‘V’ , 2021, Composites Engineering: An A–Z Guide.

[183]  Robert E. Ulanowicz,et al.  Circumscribed Complexity in Ecological Networks , 2013 .

[184]  Natalia Díaz Rodríguez,et al.  Continual learning for robotics: Definition, framework, learning strategies, opportunities and challenges , 2019, Inf. Fusion.

[185]  Christian Biemann,et al.  What do we need to build explainable AI systems for the medical domain? , 2017, ArXiv.

[186]  Igor Jurisica,et al.  TP53 mutations in high grade serous ovarian cancer and impact on clinical outcomes: a comparison of next generation sequencing and bioinformatics analyses , 2019, International Journal of Gynecologic Cancer.

[187]  Thomas Lukasiewicz,et al.  e-SNLI: Natural Language Inference with Natural Language Explanations , 2018, NeurIPS.

[188]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[189]  Igor Jurisica,et al.  Algorithms for systematic identification of small subgraphs. , 2012, Methods in molecular biology.

[190]  Ilan Y. Smoly,et al.  The TissueNet database of human tissue protein–protein interactions , 2012, Nucleic Acids Res..

[191]  C. Weißer F. , 2018, Industrial and Labor Relations Terms.

[192]  Mingming Jia,et al.  COSMIC: exploring the world's knowledge of somatic mutations in human cancer , 2014, Nucleic Acids Res..

[193]  R. Gilbert,et al.  A 4-gene signature from histologically normal surgical margins predicts local recurrence in patients with oral carcinoma: clinical validation , 2020, Scientific Reports.

[194]  Sidney Redner,et al.  Extremal Properties of Random Structures , 2003, ArXiv.

[195]  Johannes Gehrke,et al.  Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission , 2015, KDD.

[196]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[197]  Seth Flaxman,et al.  European Union Regulations on Algorithmic Decision-Making and a "Right to Explanation" , 2016, AI Mag..

[198]  Christos Faloutsos,et al.  SDREGION: Fast Spotting of Changing Communities in Biological Networks , 2018, KDD.

[199]  De Prato Giuditta,et al.  Academic offer and demand for advanced profiles in the EU , 2019 .

[200]  David Lopez-Paz,et al.  Poincaré maps for analyzing complex hierarchies in single-cell data , 2019, Nature Communications.

[201]  Yuval Pinter,et al.  Attention is not not Explanation , 2019, EMNLP.

[202]  Tim Miller,et al.  Explainable Reinforcement Learning Through a Causal Lens , 2019, AAAI.

[203]  Diogo M. Camacho,et al.  Next-Generation Machine Learning for Biological Networks , 2018, Cell.

[204]  Matthew Kim,et al.  ProvCaRe Semantic Provenance Knowledgebase: Evaluating Scientific Reproducibility of Research Studies , 2017, AMIA.

[205]  Francisco Jesús Martínez-Murcia,et al.  Uncertainty-driven ensembles of deep architectures for multiclass classification. Application to COVID-19 diagnosis in chest X-ray images , 2020, ArXiv.

[206]  T. Wong,et al.  AI for medical imaging goes deep , 2018, Nature Medicine.

[207]  Zachary Chase Lipton The mythos of model interpretability , 2016, ACM Queue.

[208]  Torbjörn E. M. Nordling,et al.  Network modeling of the transcriptional effects of copy number aberrations in glioblastoma , 2011, Molecular systems biology.

[209]  Anton J. Enright,et al.  Protein interaction maps for complete genomes based on gene fusion events , 1999, Nature.

[210]  Gustavo Stolovitzky,et al.  A single nucleotide polymorphism in the MDM2 gene disrupts the oscillation of p53 and MDM2 levels in cells. , 2007, Cancer research.

[211]  M. Gerstein,et al.  Genomic analysis of the hierarchical structure of regulatory networks , 2006, Proceedings of the National Academy of Sciences.

[212]  Evan Bolton,et al.  Database resources of the National Center for Biotechnology Information , 2017, Nucleic Acids Res..

[213]  Ryan McDonald,et al.  On Faithfulness and Factuality in Abstractive Summarization , 2020, ACL.

[214]  Jure Leskovec,et al.  Faithful and Customizable Explanations of Black Box Models , 2019, AIES.

[215]  David Lopez-Paz,et al.  Patient-Driven Privacy Control through Generalized Distillation , 2016, 2017 IEEE Symposium on Privacy-Aware Computing (PAC).

[216]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[217]  Ivan Donadello,et al.  EXplainable Neural-Symbolic Learning (X-NeSyL) methodology to fuse deep learning representations with expert knowledge graphs: the MonuMAI cultural heritage use case , 2021, Inf. Fusion.

[218]  Bernhard Schölkopf,et al.  Elements of Causal Inference: Foundations and Learning Algorithms , 2017 .

[219]  Jeff A. Bilmes,et al.  Deep Canonical Correlation Analysis , 2013, ICML.

[220]  Luc Steels,et al.  The Barcelona declaration for the proper development and usage of artificial intelligence in Europe , 2018, AI Commun..

[221]  S. Lam,et al.  Epithelial tumor suppressor ELF3 is a lineage-specific amplified oncogene in lung adenocarcinoma , 2019, Nature Communications.

[222]  Isabelle Augenstein,et al.  Transformer Based Multi-Source Domain Adaptation , 2020, EMNLP.

[223]  Doina Precup,et al.  Exploring Uncertainty Measures in Deep Networks for Multiple Sclerosis Lesion Detection and Segmentation , 2018, MICCAI.

[224]  T. Barrette,et al.  Probabilistic model of the human protein-protein interaction network , 2005, Nature Biotechnology.

[225]  M. Bronstein,et al.  Network machine learning maps phytochemically rich “Hyperfoods” to fight COVID-19 , 2020, Human Genomics.

[226]  Elliott Ash,et al.  e-FEVER: Explanations and Summaries forAutomated Fact Checking , 2020, TTO.

[227]  James H Thrall,et al.  Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success. , 2018, Journal of the American College of Radiology : JACR.

[228]  Lincoln Stein,et al.  Reactome knowledgebase of human biological pathways and processes , 2008, Nucleic Acids Res..

[229]  Jiang Bian,et al.  Causal inference and counterfactual prediction in machine learning for actionable healthcare , 2020, Nature Machine Intelligence.

[230]  Ian Goodfellow,et al.  Deep Learning with Differential Privacy , 2016, CCS.

[231]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[232]  Zhuowen Tu,et al.  Similarity network fusion for aggregating data types on a genomic scale , 2014, Nature Methods.

[233]  P. Alam ‘N’ , 2021, Composites Engineering: An A–Z Guide.

[234]  Johannes Goll,et al.  Protein interaction data curation: the International Molecular Exchange (IMEx) consortium , 2012, Nature Methods.

[235]  S. Battiato,et al.  3D Non-Local Neural Network: A Non-Invasive Biomarker for Immunotherapy Treatment Outcome Prediction. Case-Study: Metastatic Urothelial Carcinoma , 2020, J. Imaging.

[236]  Daniel A. Keim,et al.  Visual Analytics: Definition, Process, and Challenges , 2008, Information Visualization.

[237]  Vivek Jayaswal,et al.  Disturbed protein–protein interaction networks in metastatic melanoma are associated with worse prognosis and increased functional mutation burden , 2013, Pigment cell & melanoma research.

[238]  Joshua M. Stuart,et al.  The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.

[239]  P. Bork,et al.  Proteome survey reveals modularity of the yeast cell machinery , 2006, Nature.

[240]  Steven Bethard,et al.  Does BERT need domain adaptation for clinical negation detection? , 2020, J. Am. Medical Informatics Assoc..

[241]  Igor Jurisica,et al.  pathDIP 4: an extended pathway annotations and enrichment analysis resource for human, model organisms and domesticated species , 2019, Nucleic Acids Res..

[242]  M. Kaminski The right to explanation, explained , 2018, Research Handbook on Information Law and Governance.

[243]  Mehdi Fatemi,et al.  An Empirical Study of Representation Learning for Reinforcement Learning in Healthcare , 2020, ML4H@NeurIPS.

[244]  T. Ideker,et al.  Network-based classification of breast cancer metastasis , 2007, Molecular systems biology.

[245]  Lana X. Garmire,et al.  Deep Learning based multi-omics integration robustly predicts survival in liver cancer , 2017, bioRxiv.

[246]  Kwanjeera Wanichthanarak,et al.  Rise of Deep Learning for Genomic, Proteomic, and Metabolomic Data Integration in Precision Medicine , 2018, Omics : a journal of integrative biology.

[247]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[248]  E. Lundberg,et al.  Towards a knowledge-based Human Protein Atlas , 2010, Nature Biotechnology.

[249]  Mark E. J. Newman,et al.  Structure and Dynamics of Networks , 2009 .

[250]  Maël Pégny,et al.  The Right to an Explanation , 2019, Delphi - Interdisciplinary Review of Emerging Technologies.

[251]  Bernhard Schölkopf,et al.  Discovering Causal Signals in Images , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[252]  M. Ashburner,et al.  The Gene Ontology Consortium , 2000 .