Nanosheet field effect transistors-A next generation device to keep Moore's law alive: An intensive study

Abstract Incessant downscaling of feature size of multi-gate devices such as FinFETs and gate-all-around (GAA) nanowire (NW)-FETs leads to unadorned effects like short channel effects (SCEs) and self-heating effects (SHEs) which limits their performance and causes reliability issues. FinFET technology has resulted in a remarkable performance up to a feature size of 7 nm. The research community is expecting that GAA NW-FETs will take over FinFET technology from 7 nm to 5 nm. However, further shrinking of feature size to 3 nm will impose severe challenges to the performance of these aforesaid multi-gate devices. Subsequently, the electron device designer community needs to look for alternative device designs like nanosheet FETs (NS-FETs) to overcome the limitations of the FinFET and GAA NW-FETs technologies. The driving force behind the emergence of these NS-FETs is their ability to scale down even below a feature size of 5 nm with negligible short channel effects. Therefore, in this review article we have intensively investigated the NS-FETs in terms of impact of geometrical scaling, substrate material effects, parasitic channel effects, thermal effects, compatibility with different metal gates, and source/drain (S/D) metal depth effect. Consequently, it can be concluded that vertically stacked NS-FET is the most promising solution for future digital/analog integrated circuit applications due to their outstanding capability to keep Moore's Law alive.

[1]  Rajesh Saha,et al.  Simulation study on ferroelectric layer thickness dependence RF/Analog and linearity parameters in ferroelectric tunnel junction TFET , 2021, Microelectron. J..

[2]  Horng-Chih Lin,et al.  Self-Organized Ge Nanospherical Gate/SiO2/Si0.15Ge0.85–Nanosheet n-FETs Featuring High ON-OFF Drain Current Ratio , 2019, IEEE Journal of the Electron Devices Society.

[3]  K. Sivasankaran,et al.  A source/drain-on-insulator structure to improve the performance of stacked nanosheet field-effect transistors , 2020 .

[4]  Antonio J. García-Loureiro,et al.  Benchmarking of FinFET, Nanosheet, and Nanowire FET Architectures for Future Technology Nodes , 2020, IEEE Access.

[5]  C. Liu,et al.  Vertically Stacked Strained 3-GeSn-Nanosheet pGAAFETs on Si Using GeSn/Ge CVD Epitaxial Growth and the Optimum Selective Channel Release Process , 2018, IEEE Electron Device Letters.

[6]  Ming Liu,et al.  A Novel General Compact Model Approach for 7-nm Technology Node Circuit Optimization From Device Perspective and Beyond , 2019, IEEE Journal of the Electron Devices Society.

[7]  Phil Oldiges,et al.  Performance trade-offs in FinFET and gate-all-around device architectures for 7nm-node and beyond , 2015, 2015 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S).

[8]  C. Liu,et al.  On-Current Enhancement in TreeFET by Combining Vertically Stacked Nanosheets and Interbridges , 2020, IEEE Electron Device Letters.

[9]  R. Sporer,et al.  14nm Ferroelectric FinFET technology with steep subthreshold slope for ultra low power applications , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[10]  M. Schroter,et al.  Performance analysis of parallel array of nanowires and a nanosheet in SG, DG and GAA FETs , 2019 .

[12]  Jun-Sik Yoon,et al.  Multi- ${V}_{\text{th}}$ Strategies of 7-nm node Nanosheet FETs With Limited Nanosheet Spacing , 2018, IEEE Journal of the Electron Devices Society.

[13]  S. Hassan,et al.  Highly conductive metal gate fill integration solution for extremely scaled RMG stack for 5 nm & beyond , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[14]  Yogesh Singh Chauhan,et al.  Improved modeling of flicker noise including velocity saturation effect in FinFETs and experimental validation , 2021, Microelectron. J..

[15]  G. Luo,et al.  Stacked Ge-Nanosheet GAAFETs Fabricated by Ge/Si Multilayer Epitaxy , 2018, IEEE Electron Device Letters.

[16]  Jun-Sik Yoon,et al.  Systematic DC/AC Performance Benchmarking of Sub-7-nm Node FinFETs and Nanosheet FETs , 2018, IEEE Journal of the Electron Devices Society.

[17]  Christian Arvet,et al.  Isotropic etching of SiGe alloys with high selectivity to similar materials , 2004 .

[18]  L. Selmi,et al.  Performance comparison for FinFETs, nanowire and stacked nanowires FETs: Focus on the influence of surface roughness and thermal effects , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[19]  M. J. Manfra,et al.  III-V gate-all-around nanowire MOSFET process technology: From 3D to 4D , 2012, 2012 International Electron Devices Meeting.

[20]  D. Nirmal,et al.  Highly scaled graded channel GaN HEMT with peak drain current of 2.48 A/mm , 2021, AEU - International Journal of Electronics and Communications.

[21]  Jun-Sik Yoon,et al.  Sensitivity of Source/Drain Critical Dimension Variations for Sub-5-nm Node Fin and Nanosheet FETs , 2020, IEEE Transactions on Electron Devices.

[22]  Lawrence T. Clark,et al.  Comparing bulk-Si FinFET and gate-all-around FETs for the 5 ​nm technology node , 2021, Microelectron. J..

[23]  G. Pahwa,et al.  Compact Modeling of Surface Potential, Drain Current and Terminal Charges in Negative Capacitance Nanosheet FET including Quasi-Ballistic Transport , 2020, IEEE Journal of the Electron Devices Society.

[24]  Jun-Sik Yoon,et al.  Metal Source-/Drain-Induced Performance Boosting of Sub-7-nm Node Nanosheet FETs , 2019, IEEE Transactions on Electron Devices.

[25]  J. Ajayan,et al.  GaAs metamorphic high electron mobility transistors for future deep space-biomedical-millitary and communication system applications: A review , 2019, Microelectron. J..

[26]  Byung-Gook Park,et al.  Investigation of Electrical Characteristic Behavior Induced by Channel-Release Process in Stacked Nanosheet Gate-All-Around MOSFETs , 2020, IEEE Transactions on Electron Devices.

[27]  Vita Pi-Ho Hu,et al.  Negative capacitance enables FinFET and FDSOI scaling to 2 nm node , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[28]  Mainul Hossain,et al.  Exploration of Negative Capacitance in Gate-All-Around Si Nanosheet Transistors , 2020, IEEE Transactions on Electron Devices.

[29]  G. Poulin-Vittrant,et al.  Stability evaluation of ZnO nanosheet based source-gated transistors , 2019, Scientific Reports.

[30]  Byung-Gook Park,et al.  Design and Optimization of Triple-k Spacer Structure in Two-Stack Nanosheet FET From OFF-State Leakage Perspective , 2020, IEEE Transactions on Electron Devices.

[31]  Yung-Chun Wu,et al.  Fabrication and Characterization of Stacked Poly-Si Nanosheet With Gate-All-Around and Multi-Gate Junctionless Field Effect Transistors , 2019, IEEE Journal of the Electron Devices Society.

[32]  A. Elkordy,et al.  Evaluation of novel cationic gene based liposomes with cyclodextrin prepared by thin film hydration and microfluidic systems , 2019, Scientific Reports.

[33]  O. Rozeau,et al.  Performance and design considerations for gate-all-around stacked-NanoWires FETs , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[34]  Bo Liu,et al.  An improved GaN P-HEMT small-signal equivalent circuit with its parameter extraction , 2021, Microelectron. J..

[35]  Kyoung Yeon Kim,et al.  Simulation of the effect of parasitic channel height on characteristics of stacked gate-all-around nanosheet FET , 2020 .

[37]  T. K. Bhattacharyya,et al.  Opportunities in Device Scaling for 3-nm Node and Beyond: FinFET Versus GAA-FET Versus UFET , 2020, IEEE Transactions on Electron Devices.

[38]  D. Corliss,et al.  Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET , 2017, 2017 Symposium on VLSI Technology.

[39]  J. Ajayan,et al.  Lowering the Schottky Barrier Height by Titanium Contact for High-Drain Current in Mono-layer MoS2 Transistor , 2021, Journal of Electronic Materials.

[40]  D. Nirmal,et al.  A critical review of design and fabrication challenges in InP HEMTs for future terahertz frequency applications , 2021 .

[41]  Edward J. Nowak Ultimate CMOS ULSI performance , 1993, Proceedings of IEEE International Electron Devices Meeting.

[42]  Te-Kuang Chiang Nanosheet FET: A new subthreshold current model caused by interface-trapped-charge and its application for evaluation of subthreshold logic gate , 2020, Microelectron. J..

[43]  C. Hu,et al.  Compact Model for Geometry Dependent Mobility in Nanosheet FETs , 2020, IEEE Electron Device Letters.

[44]  Seunghwan Lee,et al.  Punch-Through-Stopper Free Nanosheet FETs With Crescent Inner-Spacer and Isolated Source/Drain , 2019, IEEE Access.

[45]  D. Yakimets,et al.  Power aware FinFET and lateral nanosheet FET targeting for 3nm CMOS technology , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[47]  J. G. Lee,et al.  Impact of aggressive fin width scaling on FinFET device characteristics , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[48]  K. Sivasankaran,et al.  Optimized Substrate for Improved Performance of Stacked Nanosheet Field-Effect Transistor , 2020, IEEE Transactions on Electron Devices.

[49]  C. Hu,et al.  BSIM Compact Model of Quantum Confinement in Advanced Nanosheet FETs , 2020, IEEE Transactions on Electron Devices.

[50]  Sanjay Vidhyadharan,et al.  A novel ultra-low-power CNTFET and 45 nm CMOS based ternary SRAM , 2021, Microelectron. J..

[51]  N. Horiguchi,et al.  Low-Frequency Noise Assessment of Vertically Stacked Si n-Channel Nanosheet FETs With Different Metal Gates , 2020, IEEE Transactions on Electron Devices.

[52]  R. Huang,et al.  Variability-and reliability-aware design for 16/14nm and beyond technology , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[53]  Jun Z. Huang,et al.  Design Considerations for Si- and Ge-Stacked Nanosheet pMOSFETs Based on Quantum Transport Simulations , 2020, IEEE Transactions on Electron Devices.

[55]  Huilong Zhu,et al.  Vertical Sandwich Gate-All-Around Field-Effect Transistors With Self-Aligned High-k Metal Gates and Small Effective-Gate-Length Variation , 2020, IEEE Electron Device Letters.

[56]  K. Nayak,et al.  Hetero-Interfacial Thermal Resistance Effects on Device Performance of Stacked Gate-All-Around Nanosheet FET , 2020, IEEE Transactions on Electron Devices.

[57]  R. Vega,et al.  Comparison of LER Induced Mismatch in NWFET and NSFET for 5-nm CMOS , 2020, IEEE Journal of the Electron Devices Society.

[58]  N. Collaert,et al.  Record performance Top-down In0.53Ga0.47As vertical nanowire FETs and vertical nanosheets , 2017, International Electron Devices Meeting.

[59]  Zhifeng Zhao,et al.  Negative drain-induced barrier lowering and negative differential resistance effects in negative-capacitance transistors , 2021, Microelectron. J..

[60]  Jin-Woo Han,et al.  Single-Event Transient in FinFETs and Nanosheet FETs , 2018, IEEE Electron Device Letters.

[61]  Nicolas Loubet,et al.  High-k metal gate fundamental learning and multi-Vt options for stacked nanosheet gate-all-around transistor , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[62]  Diederik Verkest,et al.  Device Exploration of NanoSheet Transistors for Sub-7-nm Technology Node , 2017, IEEE Transactions on Electron Devices.

[63]  Seunghwan Lee,et al.  Comprehensive Analysis of Source and Drain Recess Depth Variations on Silicon Nanosheet FETs for Sub 5-nm Node SoC Application , 2020, IEEE Access.

[64]  K. Nemade,et al.  Preparation of spintronically active ferromagnetic contacts based on Fe, Co and Ni Graphene nanosheets for Spin-Field Effect Transistor , 2020 .

[65]  Francky Catthoor,et al.  Understanding Energy Efficiency Benefits of Carbon Nanotube Field-Effect Transistors for Digital VLSI , 2018, IEEE Transactions on Nanotechnology.

[66]  Yao-Jen Lee,et al.  Fabrication of Vertically Stacked Nanosheet Junctionless Field-Effect Transistors and Applications for the CMOS and CFET Inverters , 2020, IEEE Transactions on Electron Devices.

[67]  Alok Naugarhiya,et al.  RF & linearity distortion sensitivity analysis of DMG-DG-Ge pocket TFET with hetero dielectric , 2021, Microelectron. J..

[68]  K. Sivasankaran,et al.  Impact of geometrical parameters and substrate on analog/RF performance of stacked nanosheet field effect transistor , 2019, Materials Science in Semiconductor Processing.

[69]  D. Mocuta,et al.  Nanowire & nanosheet FETs for ultra-scaled, high-density logic and memory applications , 2020, Solid-State Electronics.

[70]  Jun-Sik Yoon,et al.  Reduction of Process Variations for Sub-5-nm Node Fin and Nanosheet FETs Using Novel Process Scheme , 2020, IEEE Transactions on Electron Devices.

[71]  N. Horiguchi,et al.  Low–Frequency Noise in Vertically Stacked Si n–Channel Nanosheet FETs , 2020, IEEE Electron Device Letters.

[72]  Qi Guo,et al.  Modeling of TID-induced leakage current in ultra-deep submicron SOI NMOSFETs , 2020, Microelectron. J..