A brief review on piezoelectric PVDF nanofibers prepared by electrospinning

ABSTRACT Poly(vinylidene fluoride) (PVDF) has been a kind of particularly attractive piezoelectric materials for its excellent piezoelectric property. It has been proven that the piezoelectric property of PVDF can be improved by electrospinning. Recently, the technical innovations on the multiple aspects of preparing electrospun PVDF nanofibers such as collecting equipment and the pretreatment emerged in endlessly. The article introduces electrospinning briefly firstly and the second part of the paper introduces some recent research on the preparation of electrospun PVDF nanofibers. The researches about promising applications using electrospun PVDF nanofibers involve biomedicine, sensors, and energy harvesting due to its flexibility, biocompatibility, and outstanding performance. The last part of the paper reviews the typical research.

[1]  Youdong Zhang,et al.  A self-powered vibration sensor based on electrospun poly(vinylidene fluoride) nanofibres with enhanced piezoelectric response , 2016 .

[2]  J. Yun,et al.  The Fabrication and Characterization of Piezoelectric PZT/PVDF Electrospun Nanofiber Composites , 2016 .

[3]  Antonio J. Ricco,et al.  NEW ORGANIC MATERIALS SUITABLE FOR USE IN CHEMICAL SENSOR ARRAYS , 1998 .

[4]  D. Mandal,et al.  Design of In Situ Poled Ce(3+)-Doped Electrospun PVDF/Graphene Composite Nanofibers for Fabrication of Nanopressure Sensor and Ultrasensitive Acoustic Nanogenerator. , 2016, ACS applied materials & interfaces.

[5]  G. Madras,et al.  Outstanding dielectric constant and piezoelectric coefficient in electrospun nanofiber mats of PVDF containing silver decorated multiwall carbon nanotubes: assessing through piezoresponse force microscopy , 2016 .

[6]  M. Kotaki,et al.  Morphology, polymorphism behavior and molecular orientation of electrospun poly(vinylidene fluoride) fibers , 2007 .

[7]  Eyal Zussman,et al.  Experimental investigation of the governing parameters in the electrospinning of polymer solutions , 2004 .

[8]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[9]  Richard A. Revia,et al.  Electrospun uniaxially-aligned composite nanofibers as highly-efficient piezoelectric material , 2016 .

[10]  K. Bowman,et al.  Poling effect on d33 in textured Bi0.5Na0.5TiO3-based materials , 2013 .

[11]  Darrell H. Reneker,et al.  Bending instability of electrically charged liquid jets of polymer solutions in electrospinning , 2000 .

[12]  Huiqing Fan,et al.  Magnetic force driven noncontact electromagnetic-triboelectric hybrid nanogenerator for scavenging biomechanical energy , 2017 .

[13]  Elias Siores,et al.  Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications , 2014 .

[14]  Bernd Ploss,et al.  Dielectric nonlinearity of PVDF–TrFE copolymer , 2000 .

[15]  Zhong Lin Wang,et al.  Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors. , 2015, ACS nano.

[16]  Zhong Lin Wang,et al.  Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors , 2015 .

[17]  T. Arinzeh,et al.  Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds. , 2010, Acta biomaterialia.

[18]  W. Marsden I and J , 2012 .

[19]  Joshua A. Tarbutton,et al.  Electric poling-assisted additive manufacturing process for PVDF polymer-based piezoelectric device applications , 2014 .

[20]  Sungryul Yun,et al.  Discovery of Cellulose as a Smart Material , 2006 .

[21]  Yunheng Ji MORPHOLOGY , 1937, A Grammar of Italian Sign Language (LIS).

[22]  Chang‐Mou Wu,et al.  Sound absorption of electrospun polyvinylidene fluoride/graphene membranes , 2016 .

[23]  Hao Yu,et al.  Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity , 2013, Nanotechnology.

[24]  Frank Ko,et al.  Melt-electrospinning. part I: processing parameters and geometric properties , 2004 .

[25]  W. Jo,et al.  Perspective on the Development of Lead‐free Piezoceramics , 2009 .

[26]  M. Latifi,et al.  Comparative evaluation of piezoelectric response of electrospun PVDF (polyvinilydine fluoride) nanofiber with various additives for energy scavenging application , 2017 .

[27]  A. Rudie,et al.  Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: Formation, properties and nanomechanical characterization , 2012 .

[28]  Baozhang Li,et al.  Wearable piezoelectric device assembled by one-step continuous electrospinning , 2016 .

[29]  Chung-Kun Yen,et al.  Significant piezoelectric and energy harvesting enhancement of poly(vinylidene fluoride)/polypeptide fiber composites prepared through near-field electrospinning , 2015 .

[30]  Yiin-Kuen Fuh,et al.  Near field sequentially electrospun three-dimensional piezoelectric fibers arrays for self-powered sensors of human gesture recognition , 2016 .

[31]  G. Gallone,et al.  Design, fabrication and characterization of composite piezoelectric ultrafine fibers for cochlear stimulation , 2017 .

[32]  Meifang Zhu,et al.  Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers , 2015 .

[33]  J. Jang,et al.  Enhanced frequency response of a highly transparent PVDF-graphene based thin film acoustic actuator. , 2013, Chemical communications.

[34]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[35]  F. Sarry,et al.  Surface Acoustic Wave Device with Reduced Insertion Loss by Electrospinning P(VDF–TrFE)/ZnO Nanocomposites , 2016, Nano-Micro Letters.

[36]  M. S. Sorayani Bafqi,et al.  Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency , 2015, Journal of Polymer Research.

[37]  S. Ji,et al.  Flexible lead-free piezoelectric nanofiber composites based on BNT-ST and PVDF for frequency sensor applications , 2016 .

[38]  Chung-Kun Yen,et al.  Near-field electrospinning enhances the energy harvesting of hollow PVDF piezoelectric fibers , 2015 .

[39]  Daoheng Sun,et al.  Alignment of electrospun fibers using the whipping instability , 2017 .

[40]  Liwei Lin,et al.  Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning , 2013 .

[41]  Canan Dagdeviren,et al.  Processing Conditions and Aging Effect on the Morphology of PZT Electrospun Nanofibers, and Dielectric Properties of the Resulting 3–3 PZT/Polymer Composite , 2009 .

[42]  D. Ying,et al.  Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications. , 2012, Colloids and surfaces. B, Biointerfaces.

[43]  Xin Xu,et al.  An electrospun PVDF-TrFe fiber sensor platform for biological applications , 2015 .

[44]  J. Sirohi,et al.  Fundamental Understanding of Piezoelectric Strain Sensors , 1999, Smart Structures.

[45]  R. Cattrall Chemical Sensors , 1997 .

[46]  Minoo Naebe,et al.  PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators , 2017 .

[47]  M. A. Garza-Navarro,et al.  Electrospun polyvinylidene fluoride nanofibers by bubble electrospinning technique , 2016 .

[48]  K. Sriram,et al.  Fabrication of Piezoelectric Polyvinylidene Fluoride (PVDF) Polymer-Based Tactile Sensor Using Electrospinning Method , 2016 .

[49]  N Mukherjee,et al.  The piezoelectric cochlear implant: concept, feasibility, challenges, and issues. , 2000, Journal of biomedical materials research.

[50]  J. Scott,et al.  Applications of Modern Ferroelectrics , 2007, Science.

[51]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[52]  C. Jolly,et al.  Review paper: Cochlear Implants and Inner Ear Based Therapy , 2009 .

[53]  Ning Hu,et al.  Evaluation of piezoelectric property of reduced graphene oxide (rGO)–poly(vinylidene fluoride) nanocomposites. , 2012, Nanoscale.

[54]  J Janata Chemical sensors. , 1990, Analytical chemistry.

[55]  Qingbiao Li,et al.  Improved piezoelectric properties of electrospun poly(vinylidene fluoride) fibers blended with cellulose nanocrystals , 2017 .