Progress in Laser-Crystallized Thin-Film Polycrystalline Silicon Solar Cells: Intermediate Layers, Light Trapping, and Metallization

Diode laser crystallization of thin silicon films on the glass has been used to form polycrystalline silicon layers for solar cells. Properties of an intermediate layer stack of sputtered SiOx/SiNx/SiOx between the glass and the silicon have been improved by reactively sputtering the SiNx layer, which result in enhanced optical and electrical performance. Light trapping is further enhanced by texturing the rear surface of the silicon prior to metallization. An initial efficiency of 11.7% with VOC of 585 mV has been achieved using this technique, which are the highest values reported for poly-Si solar cells on glass substrates. Cells suffer a short term, recoverable degradation of VOC, and fill factor. The magnitude of the degradation is reduced via the repeated thermal treatment. A selective p+ metallization scheme has been developed which eliminates the degradation altogether.

[1]  Martin A. Green,et al.  Polycrystalline silicon on glass for thin-film solar cells , 2009 .

[2]  S. Varlamov,et al.  Diode laser processed crystalline silicon thin-film solar cells , 2013, Photonics West - Lasers and Applications in Science and Engineering.

[3]  Benjamin G. Lee,et al.  600 mV epitaxial crystal silicon solar cells grown on seeded glass , 2013, Photovoltaic Specialists Conference.

[4]  M. Green,et al.  Thin‐film polycrystalline silicon solar cells formed by diode laser crystallisation , 2013 .

[5]  W. Metzger,et al.  Comparison of techniques for measuring carrier lifetime in thin-film and multicrystalline photovoltaic materials , 2010 .

[6]  W. Warta,et al.  Solar cell efficiency tables (version 33) , 2009 .

[7]  Martin A. Green,et al.  Large Grained, Low Defect Density Polycrystalline Silicon on Glass Substrates by Large-area Diode Laser Crystallisation , 2012 .

[8]  D. Amkreutz,et al.  Electron‐beam crystallized large grained silicon solar cell on glass substrate , 2011 .

[9]  Thomas R. Fanning,et al.  Pyramidal light trapping and hydrogen passivation for high-efficiency heteroepitaxial (100) crystal silicon solar cells , 2012 .

[10]  S. Reber,et al.  Recrystallized silicon thin-film solar cells on zircon ceramics , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).

[11]  M. Taguchi,et al.  HITTM cells—high-efficiency crystalline Si cells with novel structure , 2000 .

[12]  R. Brendel,et al.  Low‐temperature formation of local Al contacts to a‐Si:H‐passivated Si wafers , 2004 .

[13]  H. Card,et al.  Aluminum—Silicon Schottky barriers and ohmic contacts in integrated circuits , 1976, IEEE Transactions on Electron Devices.

[14]  S. Reber,et al.  Intermediate Layer and Back Surface Field Optimisations for the Recrystallised Wafer Equivalent , 2012 .

[15]  Martin A. Green,et al.  Solar cell efficiency tables (Version 34) , 2009 .

[16]  A. Gawlik,et al.  Multicrystalline silicon thin film solar cells based on a two-step liquid phase laser crystallization process , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).

[17]  D. A. Clugston,et al.  Crystalline silicon on glass (CSG) thin-film solar cell modules , 2004 .

[18]  M. Green,et al.  Intermediate Layers for Thin-Film Polycrystalline Silicon Solar Cells on Glass Formed by Diode Laser Crystallization , 2012 .

[19]  Martin A. Green,et al.  CSG Minimodules Using Electron-Beam Evaporated Silicon , 2009 .

[20]  Bernd Rech,et al.  Polycrystalline silicon heterojunction thin-film solar cells on glass exhibiting 582 mV open-circuit voltage , 2013 .

[21]  M. Green,et al.  Thin-Film Polycrystalline Silicon Solar Cells Formed by Diode Laser Crystallisation , 2012 .

[22]  T. Kieliba,et al.  Optimization of c-Si films formed by zone-melting recrystallization for thin-film solar cells , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.