GPU accelerated RBF-FD solution of Poisson’s equation

The Radial Basis Function-generated finite differences became a popular variant of local meshless strong form methods due to its robustness regarding the position of nodes and its controllable order of accuracy. In this paper, we present a GPU accelerated numerical solution of Poisson’s equation on scattered nodes in 2D for orders from 2 up to 6. We specifically study the effect of using different orders on GPU acceleration efficiency.

[1]  Jure Slak,et al.  Medusa: A C++ Library for solving PDEs using Strong Form Mesh-Free methods , 2019, ArXiv.

[2]  A. I. Tolstykh,et al.  On using radial basis functions in a “finite difference mode” with applications to elasticity problems , 2003 .

[3]  Saeid Abbasbandy,et al.  Pricing European and American Options Using a Very Fast and Accurate Scheme: The Meshless Local Petrov–Galerkin Method , 2015 .

[4]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[5]  Bengt Fornberg,et al.  On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs , 2017, J. Comput. Phys..

[6]  Deendarlianto,et al.  Meshless numerical model based on radial basis function (RBF) method to simulate the Rayleigh–Taylor instability (RTI) , 2020 .

[7]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[8]  Kevin Skadron,et al.  Scalable parallel programming , 2008, 2008 IEEE Hot Chips 20 Symposium (HCS).

[9]  J. Oden,et al.  H‐p clouds—an h‐p meshless method , 1996 .

[10]  Gregor Kosec,et al.  A local numerical solution of a fluid-flow problem on an irregular domain , 2016, Adv. Eng. Softw..

[11]  Cheng Cao,et al.  A GPU-accelerated implicit meshless method for compressible flows , 2018, J. Comput. Phys..

[12]  G. Kosec,et al.  High order RBF-FD approximations with application to a scattering problem , 2019, 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech).

[13]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[14]  Bengt Fornberg,et al.  Solving PDEs with radial basis functions * , 2015, Acta Numerica.

[15]  Bengt Fornberg,et al.  On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy , 2016, J. Comput. Phys..

[16]  Jure Slak,et al.  On generation of node distributions for meshless PDE discretizations , 2018, SIAM J. Sci. Comput..

[17]  FornbergBengt,et al.  On the role of polynomials in RBF-FD approximations , 2016 .

[18]  Alain J. Kassab,et al.  Numerical solution of the two-phase incompressible Navier–Stokes equations using a GPU-accelerated meshless method , 2014 .

[19]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[20]  G. Kosec,et al.  Local strong form meshless method on multiple GraphicsProcessing Units , 2013 .

[21]  Jure Slak,et al.  Analysis of high order dimension independent RBF-FD solution of Poisson's equation , 2019, ArXiv.

[22]  Evan F. Bollig,et al.  Solution to PDEs using radial basis function finite-differences (RBF-FD) on multiple GPUs , 2012, J. Comput. Phys..