Two-level method and some a priori estimates in unsteady Navier—Stokes calculations

A two-level method proposed for quasielliptic problems is adapted in this paper to the simulation of unsteady incompressible Navier-Stokes flows. The method requires a solution of a nonlinear problem on a coarse grid and a solution of linear symmetric problem on a fine grid, the scaling between these two grids is superlinear. Approximation, stability, and convergence aspects of a fully discrete scheme are considered. Stability properties of the two-level scheme are compared with those for a commonly used semi-implicit scheme, some new estimates are also proved for the latter.

[1]  William Layton,et al.  Two-level Picard and modified Picard methods for the Navier-Stokes equations , 1995 .

[2]  O. Pironneau Finite Element Methods for Fluids , 1990 .

[3]  S. Turek a Comparative Study of Time-Stepping Techniques for the Incompressible Navier-Stokes Equations: from Fully Implicit Non-Linear Schemes to Semi-Implicit Projection Methods , 1996 .

[4]  Philip M. Gresho,et al.  The Finite Element Method in Viscous Incompressible Flows , 1989 .

[5]  William Layton,et al.  A multilevel mesh independence principle for the Navier-Stokes equations , 1996 .

[6]  William Layton,et al.  A two-level discretization method for the Navier-Stokes equations , 1993 .

[7]  On numerical solution of nonstationary Stokes equations , 1995 .

[8]  Zbigniew Leyk Galerkin method and optimal error algorithms in hilbert spaces , 1990 .

[9]  J. Verwer,et al.  Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations , 1984 .

[10]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[11]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[12]  Owe Axelsson,et al.  On mesh independence and Newton-type methods , 1993 .

[13]  Philip M. Gresho,et al.  On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .

[14]  Maxim A. Olshanskii,et al.  Effective preconditioning of Uzawa type schemes for a generalized Stokes problem , 2000, Numerische Mathematik.

[15]  Jinchao Xu Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .

[16]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[17]  O. Axelsson,et al.  A Two-Level Method for the Discretization of Nonlinear Boundary Value Problems , 1996 .

[18]  Ohannes A. Karakashian,et al.  On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations , 1982 .

[19]  M. Marion,et al.  Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the Navier-Stokes equations , 1994 .

[20]  Jinchao Xu,et al.  Error estimates on a new nonlinear Galerkin method based on two-grid finite elements , 1995 .

[21]  R. Temam,et al.  Nonlinear Galerkin methods , 1989 .

[22]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[23]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[24]  R. Temam,et al.  Nonlinear Galerkin methods: The finite elements case , 1990 .

[25]  R. Temam Navier-Stokes Equations , 1977 .

[26]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[27]  Rolf Rannacher,et al.  Implicit Time-Discretization of the Nonstationary Incompressible Navier-Stokes Equations , 1995 .

[28]  Dan G. Tuckness,et al.  Analysis of optical navigation error during Mars entry , 1996 .

[29]  Roger Temam Stability analysis of the nonlinear Galerkin method , 1991 .