Minimum $Q$ Electrically Small Antennas

Theoretically, the minimum radiation quality factor Q of an isolated resonance can be achieved in a spherical electrically small antenna by combining TM1m and TE1m spherical modes, provided that the stored energy in the antenna spherical volume is totally suppressed. Using closed-form expressions for the stored energies obtained through the vector spherical wave theory, it is shown that a magnetic-coated metal core reduces the internal stored energy of both TM1m and TE1m modes simultaneously, so that a self-resonant antenna with the Q approaching the fundamental minimum is created. Numerical results for a multiarm spherical helix antenna confirm the theoretical predictions. For example, a 4-arm spherical helix antenna with a magnetic-coated perfectly electrically conducting core (ka=0.254) exhibits the Q of 0.66 times the Chu lower bound, or 1.25 times the minimum Q.

[1]  J. Lewis,et al.  Conformal Printing of Electrically Small Antennas on Three‐Dimensional Surfaces , 2011, Advanced materials.

[2]  Stephen R. Forrest,et al.  Novel methods to analyze and fabricate electrically small antennas , 2011, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI).

[3]  Olav Breinbjerg,et al.  Electrically small magnetic dipole antennas with magnetic core , 2010, Proceedings of the Fourth European Conference on Antennas and Propagation.

[4]  Oleksiy S. Kim Novel electrically small spherical electric dipole antenna , 2010, 2010 International Workshop on Antenna Technology (iWAT).

[5]  Olav Breinbjerg,et al.  Lower Bound for the Radiation $Q$ of Electrically Small Magnetic Dipole Antennas With Solid Magnetodielectric Core , 2011, IEEE Transactions on Antennas and Propagation.

[6]  R. Collin,et al.  Evaluation of antenna Q , 1964 .

[7]  O. Breinbjerg,et al.  Higher order hierarchical Legendre basis functions in integral equation formulations applied to complex electromagnetic problems , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[8]  O. S. Kim,et al.  Reaching the Chu Lower Bound on Q With Magnetic Dipole Antennas Using a Magnetic-Coated PEC Core , 2011, IEEE Transactions on Antennas and Propagation.

[9]  Olav Breinbjerg,et al.  Decreasing the radiation quality factor of magnetic dipole antennas by a magnetic-coated metal core , 2010, 2010 Conference Proceedings ICECom, 20th International Conference on Applied Electromagnetics and Communications.

[10]  S.R. Best,et al.  Low Q electrically small linear and elliptical polarized spherical dipole antennas , 2005, IEEE Transactions on Antennas and Propagation.

[11]  S. Best A Low Q Electrically Small Magnetic (TE Mode) Dipole , 2009, IEEE Antennas and Wireless Propagation Letters.

[12]  S. Best The radiation properties of electrically small folded spherical helix antennas , 2004, IEEE Transactions on Antennas and Propagation.

[13]  R. E. Collin,et al.  Minimum Qof small Antennas , 1998 .

[14]  H. A. Wheeler,et al.  The Spherical Coil as an Inductor, Shield, or Antenna , 1958, Proceedings of the IRE.

[15]  H.A. Wheeler,et al.  Fundamental Limitations of Small Antennas , 1947, Proceedings of the IRE.

[16]  Cuong Tran,et al.  Small Spherical Antennas Using Arrays of Electromagnetically Coupled Planar Elements , 2007, IEEE Antennas and Wireless Propagation Letters.

[17]  R. Sutton,et al.  Broadband, electrically-small spherical-wire and generalized loop antennas exploiting inhomogeneous magnetic cores , 2010, 2010 Conference Proceedings ICECom, 20th International Conference on Applied Electromagnetics and Communications.

[18]  L. J. Chu Physical Limitations of Omni‐Directional Antennas , 1948 .

[19]  O. S. Kim,et al.  Stored Energy and Quality Factor of Spherical Wave Functions–in Relation to Spherical Antennas With Material Cores , 2012, IEEE Transactions on Antennas and Propagation.

[20]  S.R. Best,et al.  Limitations in Relating Quality Factor to Bandwidth in a Double Resonance Small Antenna , 2007, IEEE Antennas and Wireless Propagation Letters.

[21]  W. Geyi Physical limitations of antenna , 2003 .

[22]  Olav Breinbjerg,et al.  Electrically Small Magnetic Dipole Antennas With Quality Factors Approaching the Chu Lower Bound , 2009, IEEE Transactions on Antennas and Propagation.

[23]  Clive Parini,et al.  Spherical near-field antenna measurements , 2014, Theory and Practice of Modern Antenna Range Measurements, 2nd Expanded Edition, Volume 2.

[24]  A. Yaghjian,et al.  Internal Energy, Q-Energy, Poynting's Theorem, and the Stress Dyadic in Dispersive Material , 2007, IEEE Transactions on Antennas and Propagation.

[25]  R. Fante Quality factor of general ideal antennas , 1969 .

[26]  A. Yaghjian,et al.  Lower Bounds on the Q of Electrically Small Dipole Antennas , 2010, IEEE Transactions on Antennas and Propagation.

[27]  H. Thal,et al.  Gain and Q Bounds for Coupled TM-TE Modes , 2009, IEEE Transactions on Antennas and Propagation.

[28]  R. Collin,et al.  A New Chu Formula for Q , 2009, IEEE Antennas and Propagation Magazine.

[29]  A. Yaghjian,et al.  Approaching the Lower Bounds on Q for Electrically Small Electric-Dipole Antennas Using High Permeability Shells , 2010, IEEE Transactions on Antennas and Propagation.

[30]  S. Best,et al.  Impedance, bandwidth, and Q of antennas , 2005 .

[31]  H. Thal New Radiation$Q$Limits for Spherical Wire Antennas , 2006, IEEE Transactions on Antennas and Propagation.

[32]  O. Kim Electric Dipole Antennas With Magnetic-Coated PEC Cores: Reaching the Chu Lower Bound on $Q$ , 2012, IEEE Transactions on Antennas and Propagation.

[33]  O. Kim,et al.  Low-Q Electrically Small Spherical Magnetic Dipole Antennas , 2010, IEEE Transactions on Antennas and Propagation.

[34]  S. A Re-Examination of the Fundamental Limits on the Radiation Q of Electrically Small Antennas , 2008 .