Short- and intermediate-range structural correlations in amorphous silicon carbide: a molecular dynamics study

Short- and intermediate-range structural correlations in amorphous silicon carbide $(\mathrm{a}\text{\ensuremath{-}}\mathrm{SiC})$ are studied in terms of partial pair distributions, bond angle distribution functions, and shortest-path ring statistics. A well relaxed sample is prepared following a slow annealing schedule of the simulation at the experimental density of the amorphous phase. The short-range correlation functions indicate a locally ordered amorphous structure with heteronuclear bonds, $\mathrm{Si}--\mathrm{C}$, with no phase separation, and no graphitic or diamond structures present. The bond distances and coordination numbers are similar to those in the crystalline phase. The rings statistics indicate an intermediate-range topology formed by the rearrangement of tetrahedra with the occurrence of corner and edge sharing units connecting two- ($\ensuremath{\sim}5%$ of total), three-, four-, and five-fold rings. The presence of large size rings indicates the existence of nano-voids in the structure, which explains the low density compared with the crystal phase while keeping the same coordination number and bond distance. These simulation results agree well with experimental results.

[1]  M. Catti,et al.  Orthorhombic intermediate state in the zinc blende to rocksalt transformation path of SiC at high pressure. , 2001, Physical review letters.

[2]  Maria Mitkova,et al.  Amorphous insulators and semiconductors , 1997 .

[3]  T. Kobayashi,et al.  Shock compression of 6H polytype SiC to 160 GPa , 1997 .

[4]  A. Sproul,et al.  Structural study of hydrogenated amorphous silicon–carbon alloys , 1986 .

[5]  T. Hioki,et al.  Mechanical property changes in sapphire by nickel ion implantation and their dependence on implantation temperature , 1986 .

[6]  J. A. Powell,et al.  Silicon carbide, a high temperature semiconductor , 1983 .

[7]  Rajiv K. Kalia,et al.  Linear-scaling density-functional-theory calculations of electronic structure based on real-space grids: design, analysis, and scalability test of parallel algorithms , 2001 .

[8]  D. Price,et al.  Structure and dynamics of phosphate glasses: From ultra- to orthophosphate composition , 1997 .

[9]  F. Alvarez,et al.  CHEMICAL (DIS)ORDER IN A-SI1-XCX:H FOR X<0.6 , 1997 .

[10]  Steve W. Martin,et al.  Structure of vitreous P2O5 and alkali phosphate glasses , 1998 .

[11]  Rajiv K. Kalia,et al.  Computer-aided design of high-temperature materials , 1999 .

[12]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[13]  M. Catti First-principles study of the orthorhombic mechanism for the B3/B1 high-pressure phase transition of ZnS , 2002 .

[14]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[15]  G. R. Fisher,et al.  Towards a unified view of polytypism in silicon carbide , 1990 .

[16]  M. Shur,et al.  Properties of advanced semiconductor materials : GaN, AlN, InN, BN, SiC, SiGe , 2001 .

[17]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[18]  Nakano,et al.  Molecular dynamics simulation of structural transformation in silicon carbide under pressure , 2000, Physical review letters.

[19]  Theory of electronic properties of amorphous silicon-carbon alloys: Effects of short-range disorder , 1993 .

[20]  Rajiv K. Kalia,et al.  Topology of amorphous gallium arsenide on intermediate length scales: A molecular dynamics study , 2000 .

[21]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[22]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[23]  M. L. Cohen,et al.  Predicting useful materials. , 1993, Science.

[24]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[25]  A. Kolesnikov,et al.  Neutron spectroscopy of high-density amorphous ice , 1998 .

[26]  Bertoni,et al.  Microscopic struture of amorphous covalent alloys probed by ab initio molecular dynamics: SiC. , 1992, Physical review letters.

[27]  D. Price,et al.  Neutron scattering function of vitreous and molten zinc chloride , 1991 .

[28]  D. Price,et al.  Local and Intermediate-Range Order in Cesium Germanate Glass , 1995 .

[29]  F. Evangelisti,et al.  structural study of a-Si1-xCx:H by EXAFS and X-Ray scattering , 1991 .

[30]  Kelires Pc Short-range order and energetics of disordered silicon-carbon alloys. , 1992 .

[31]  Babb,et al.  Evaluation of retardation energy shifts in a Rydberg helium atom. , 1988, Physical review. A, General physics.

[32]  Y. Katayama,et al.  Chemical bonding states in the amorphous SixC1–x: H system studied by X-ray photoemission spectroscopy and infrared absorption spectra , 1981 .

[33]  D. Price,et al.  Intermediate-range order in permanently densified GeO2 glass. , 2003, Physical review letters.

[34]  P. Kelires,et al.  Total-energy and entropy considerations as a probe of chemical order in amorphous silicon carbide , 1998 .

[35]  Evangelisti,et al.  Structure of hydrogenated amorphous silicon-carbon alloys as investigated by extended x-ray-absorption fine structure. , 1992, Physical review. B, Condensed matter.

[36]  Structure and Chemical Ordering in Amorphous Silicon Carbide Alloys , 1991 .

[37]  Nakano,et al.  Structure of rings in vitreous SiO2. , 1993, Physical review. B, Condensed matter.

[38]  Tersoff Chemical order in amorphous silicon carbide. , 1994, Physical review. B, Condensed matter.

[39]  R. Kalia,et al.  Incipient phase separation in Ag/Ge/Se glasses: clustering of Ag atoms , 2000 .

[40]  P. Turchi,et al.  Tight-binding molecular-dynamics simulations of amorphous silicon carbides , 2002 .

[41]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[42]  Ueno,et al.  Pressure-induced phase transition in SiC. , 1993, Physical review. B, Condensed matter.

[43]  B. Appleton,et al.  Structural alterations in SiC as a result of Cr+ and N+ implantation , 1983 .

[44]  D. Price,et al.  Atomic structure and dynamics of fast-ion conducting glasses , 1994 .

[45]  Kenneth R. Hall,et al.  Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases , 1985 .

[46]  D. Klug,et al.  Dynamics and Structural Details of Amorphous Phases of Ice Determined by Incoherent Inelastic Neutron Scattering , 1999 .

[47]  T. J. Danaher Air Force Cambridge Research Laboratories balloon operations , 1974 .

[48]  N. Schell,et al.  Density and structural changes in SiC after amorphization and annealing , 1997 .

[49]  A. Kolesnikov,et al.  Vibrational dynamics of amorphous ice , 1999 .

[50]  Wolfgang Skorupa,et al.  Amorphization and recrystallization of 6H‐SiC by ion‐beam irradiation , 1995 .

[51]  Syo Matsumura,et al.  Structural relaxation of amorphous silicon carbide. , 2002, Physical review letters.