All-sky search for gravitational-wave bursts in the third Advanced LIGO-Virgo run with coherent WaveBurst enhanced by Machine Learning

This paper presents a search for generic short-duration gravitational-wave (GW) transients (or GW bursts) in the data from the third observing run of Advanced LIGO and Advanced Virgo. We use coherent WaveBurst (cWB) pipeline enhanced with a decision-tree classification algorithm for more efficient separation of GW signals from noise transients. The machine-learning (ML) algorithm is trained on a representative set of the noise events and a set of simulated stochastic signals that are not correlated with any known signal model. This training procedure preserves the model-independent nature of the search. We demonstrate that the ML-enhanced cWB pipeline can detect GW signals at a larger distance than the previous model-independent searches, and the sensitivity improvements are achieved across a broad spectrum of simulated signals used in the analysis. At a false-alarm rate of one event per century, the detectable signal amplitudes are reduced up to almost an order of magnitude, most notably for cosmic strings. By testing the pipeline for the detection of compact binaries, we verified that it detects more systems in a wide range of masses from stellar mass to intermediate-mass black-holes, both with circular and elliptical orbits. After excluding previously detected compact binaries, no new gravitational-wave signals are observed for the two-fold Hanford-Livingston and the three-fold Hanford-Livingston-Virgo detector networks. With the improved sensitivity of the all-sky search, we obtain the most stringent constraints on the isotropic emission of gravitational-wave energy from the short-duration burst sources.

[1]  A. Gopakumar,et al.  Observational limits on the rate of radiation-driven binary black hole capture events , 2022, 2208.07762.

[2]  G. Prodi,et al.  Prospects for detecting and localizing short-duration transient gravitational waves from glitching neutron stars without electromagnetic counterparts , 2022, 2206.14515.

[3]  E. Milotti,et al.  Search for binary black hole mergers in the third observing run of Advanced LIGO-Virgo using coherent WaveBurst enhanced with machine learning , 2022, Physical Review D.

[4]  C. Messenger,et al.  Utilizing Gaussian mixture models in all-sky searches for short-duration gravitational wave bursts , 2021, Physical Review D.

[5]  K. Kotake,et al.  Core-collapse Supernova Simulations and the Formation of Neutron Stars, Hybrid Stars, and Black Holes , 2021, The Astrophysical Journal.

[6]  I. Bartos,et al.  AGN as potential factories for eccentric black hole mergers , 2020, Nature.

[7]  M. Szczepańczyk,et al.  Eccentricity estimate for black hole mergers with numerical relativity simulations , 2020, Nature Astronomy.

[8]  Astrophysics,et al.  Pulsational pair-instability supernovae: gravitational collapse, black-hole formation, and beyond , 2021, 2112.09707.

[9]  P. K. Panda,et al.  GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run , 2021, 2111.03606.

[10]  G. Franciolini Primordial Black Holes: from Theory to Gravitational Wave Observations , 2021, 2110.06815.

[11]  M. Aloy,et al.  Magnetorotational core collapse of possible GRB progenitors. IV. A wider range of progenitors , 2021, 2108.13864.

[12]  E. Milotti,et al.  Minimally-modeled search of higher multipole gravitational-wave radiation in compact binary coalescences , 2021, Classical and Quantum Gravity.

[13]  M. J. Williams,et al.  GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run , 2021, Physical Review D.

[14]  M. J. Williams,et al.  All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run , 2021, Physical Review D.

[15]  S. Klimenko,et al.  Detection of LIGO-Virgo binary black holes in the pair-instability mass gap , 2021, Physical Review D.

[16]  S. Klimenko,et al.  Optimization of model independent gravitational wave search for binary black hole mergers using machine learning , 2021, Physical Review D.

[17]  S. Klimenko,et al.  Detecting and reconstructing gravitational waves from the next galactic core-collapse supernova in the advanced detector era , 2021, Physical Review D.

[18]  M. J. Williams,et al.  Constraints on Cosmic Strings Using Data from the Third Advanced LIGO – Virgo Observing Run , 2021 .

[19]  J. Powell,et al.  The final core collapse of pulsational pair instability supernovae , 2021, 2101.06889.

[20]  M. J. Williams,et al.  GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run , 2021 .

[21]  M. J. Williams,et al.  Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog , 2020, 2010.14533.

[22]  S. Couch,et al.  Stellar Mass Black Hole Formation and Multimessenger Signals from Three-dimensional Rotating Core-collapse Supernova Simulations , 2020, The Astrophysical Journal.

[23]  E. Milotti,et al.  Observing an intermediate-mass black hole GW190521 with minimal assumptions , 2020, Physical Review D.

[24]  J. Bustillo,et al.  Confusing Head-On Collisions with Precessing Intermediate-Mass Binary Black Hole Mergers. , 2020, Physical review letters.

[25]  A. Green,et al.  Primordial black holes as a dark matter candidate , 2020, Journal of Physics G: Nuclear and Particle Physics.

[26]  E. Milotti,et al.  coherent WaveBurst, a pipeline for unmodeled gravitational-wave data analysis , 2020, SoftwareX.

[27]  Run GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run , 2021 .

[28]  P. K. Panda,et al.  GW190521: A Binary Black Hole Merger with a Total Mass of 150  M_{⊙}. , 2020, Physical review letters.

[29]  M. Aloy,et al.  Magnetorotational core collapse of possible GRB progenitors – III. Three-dimensional models , 2020, 2008.07205.

[30]  P. K. Panda,et al.  GW190814: Gravitational Waves from the Coalescence of a 23 M$_\odot$ Black Hole with a 2.6 M$_\odot$ Compact Object , 2020, 2006.12611.

[31]  S. Tiwari,et al.  Search for nonlinear memory from subsolar mass compact binary mergers , 2020, Physical Review D.

[32]  J. Powell,et al.  Three-dimensional core-collapse supernova simulations of massive and rotating progenitors , 2020, Monthly Notices of the Royal Astronomical Society.

[33]  Marco Cavaglia,et al.  Improving the background of gravitational-wave searches for core collapse supernovae: a machine learning approach , 2020, Mach. Learn. Sci. Technol..

[34]  Z. Haiman,et al.  The Assembly of the First Massive Black Holes , 2019, 1911.05791.

[35]  P. K. Panda,et al.  Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs , 2019, The Astrophysical Journal.

[36]  P. K. Panda,et al.  Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network , 2019 .

[37]  Shaughnessy,et al.  All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run , 2019 .

[38]  K. Holley-Bockelmann,et al.  Where are the Intermediate Mass Black Holes , 2019, 1903.08144.

[39]  S. Coughlin,et al.  The Fate of Binaries in the Galactic Center: The Mundane and the Exotic , 2019, The Astrophysical Journal.

[40]  J. Kissel,et al.  Blip glitches in Advanced LIGO data , 2019, Classical and Quantum Gravity.

[41]  D. Radice,et al.  Characterizing the Gravitational Wave Signal from Core-collapse Supernovae , 2018, The Astrophysical Journal.

[42]  J. Powell,et al.  Gravitational wave emission from 3D explosion models of core-collapse supernovae with low and normal explosion energies , 2018, Monthly Notices of the Royal Astronomical Society.

[43]  B. A. Boom,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .

[44]  Cambridge,et al.  Gravitational waves from 3D core-collapse supernova models: The impact of moderate progenitor rotation , 2018, Monthly Notices of the Royal Astronomical Society.

[45]  S. Couch,et al.  Exploring Fundamentally Three-dimensional Phenomena in High-fidelity Simulations of Core-collapse Supernovae , 2018, The Astrophysical Journal.

[46]  A. Gopakumar,et al.  Gravitational waves from compact binaries in post-Newtonian accurate hyperbolic orbits , 2018, Physical Review D.

[47]  Shuang-Nan Zhang,et al.  Probing the physics of newly born magnetars through observation of superluminous supernovae , 2018, 1805.05262.

[48]  Takahiro Tanaka,et al.  Primordial black holes—perspectives in gravitational wave astronomy , 2018, 1801.05235.

[49]  Eric Thrane,et al.  Measuring the Binary Black Hole Mass Spectrum with an Astrophysically Motivated Parameterization , 2018, 1801.02699.

[50]  K. Kotake,et al.  A full general relativistic neutrino radiation-hydrodynamics simulation of a collapsing very massive star and the formation of a black hole , 2018, 1801.01293.

[51]  Y. Wang,et al.  Constraints on cosmic strings using data from the first Advanced LIGO observing run , 2017, 1712.01168.

[52]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.

[53]  B. A. Boom,et al.  Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817 , 2017, 1710.09320.

[54]  K. Hayama,et al.  Correlated Signatures of Gravitational-wave and Neutrino Emission in Three-dimensional General-relativistic Core-collapse Supernova Simulations , 2017, 1708.05252.

[55]  F. Koliopanos Intermediate Mass Black Holes: A Review , 2017 .

[56]  B. A. Boom,et al.  Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO , 2017, 1704.04628.

[57]  Carlos O. Lousto,et al.  The RIT binary black hole simulations catalog , 2017, 1703.03423.

[58]  G. Vedovato,et al.  Enhancing the significance of gravitational wave bursts through signal classification , 2017, 1702.03208.

[59]  O. E. Bronson Messer,et al.  Gravitational-wave signal of a core-collapse supernova explosion of a 15 M⊙ star , 2017, 1701.07325.

[60]  K. Hotokezaka,et al.  Formation pathway of Population III coalescing binary black holes through stable mass transfer , 2017, 1701.04823.

[61]  Michael Boyle,et al.  Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors , 2016, 1611.03703.

[62]  Tum,et al.  Gravitational wave signals from 3D neutrino hydrodynamics simulations of core-collapse supernovae , 2016, 1607.05199.

[63]  K. Kotake,et al.  A NEW GRAVITATIONAL-WAVE SIGNATURE FROM STANDING ACCRETION SHOCK INSTABILITY IN SUPERNOVAE , 2016, 1605.09215.

[64]  Karan Jani,et al.  Georgia tech catalog of gravitational waveforms , 2016, 1605.03204.

[65]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[66]  I. Mandel,et al.  The chemically homogeneous evolutionary channel for binary black hole mergers: rates and properties of gravitational-wave events detectable by advanced LIGO , 2016, 1603.02291.

[67]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[68]  Bence Kocsis,et al.  Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei , 2016, 1602.03831.

[69]  B. A. Boom,et al.  Observing gravitational-wave transient GW150914 with minimal assumptions , 2016 .

[70]  N. Langer,et al.  A new route towards merging massive black holes , 2016, 1601.03718.

[71]  Erik Katsavounidis,et al.  Information-theoretic approach to the gravitational-wave burst detection problem , 2015, 1511.05955.

[72]  G. Mitselmakher,et al.  Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors , 2015, 1511.05999.

[73]  Neil J. Cornish,et al.  Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches , 2014, 1410.3835.

[74]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[75]  W. East GRAVITATIONAL WAVES FROM THE COLLISION OF TIDALLY DISRUPTED STARS WITH MASSIVE BLACK HOLES , 2014, 1408.1695.

[76]  J. K. Blackburn,et al.  Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run , 2014, 1404.2199.

[77]  Caltech,et al.  Measuring the angular momentum distribution in core-collapse supernova progenitors with gravitational waves , 2013, 1311.3678.

[78]  M. Aloy,et al.  GRAVITATIONAL WAVE SIGNATURES IN BLACK HOLE FORMING CORE COLLAPSE , 2013, 1310.8290.

[79]  Michael Boyle,et al.  Catalog of 174 binary black hole simulations for gravitational wave astronomy. , 2013, Physical review letters.

[80]  P. Jetzer,et al.  Gravitational wave energy spectrum of hyperbolic encounters , 2012, 1207.5359.

[81]  V. Necula,et al.  Transient analysis with fast Wilson-Daubechies time-frequency transform , 2012 .

[82]  A. Melatos,et al.  Gravitational-wave bursts and stochastic background from superfluid vortex avalanches during pulsar glitches , 2012, 1203.4466.

[83]  K. S. Thorne,et al.  All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run , 2012, 1202.2788.

[84]  J. K. Blackburn,et al.  Search for gravitational waves from intermediate mass binary black holes , 2012, 1201.5999.

[85]  H. Janka,et al.  Parametrized 3D models of neutrino-driven supernova explosions - Neutrino emission asymmetries and gravitational-wave signals , 2011, 1106.6301.

[86]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[87]  The LIGO Scientific Collaboration,et al.  All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run , 2010, 1002.1036.

[88]  K. Murase,et al.  Probing the central engine of long gamma-ray bursts and hypernovae with gravitational waves and neutrinos , 2009, 0906.3833.

[89]  et al,et al.  Search for gravitational-wave bursts in the first year of the fifth LIGO science run , 2009, 0905.0020.

[90]  S. Klimenko,et al.  Search for Gravitational Wave Bursts from Soft Gamma Repeaters , 2008, 0808.2050.

[91]  M. M. Casey,et al.  Search for gravitational-wave bursts in LIGO's third science run , 2006 .

[92]  M. M. Casey,et al.  Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts , 2005 .

[93]  M. M. Casey,et al.  Upper limits on gravitational wave bursts in LIGO's second science run , 2005 .

[94]  Tx,et al.  Constraint Likelihood analysis for a network of gravitational wave detectors , 2005, gr-qc/0508068.

[95]  L. S. Collaboration,et al.  Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts , 2005, gr-qc/0507081.

[96]  T. Damour,et al.  Gravitational radiation from cosmic (super)strings: Bursts, stochastic background, and observational windows , 2004, hep-th/0410222.

[97]  R. Prix,et al.  The superfluid two‐stream instability , 2004 .

[98]  A. Weinstein First upper limits from LIGO on gravitational wave bursts , 2004 .

[99]  S Klimenko,et al.  A wavelet method for detection of gravitational wave bursts , 2004 .

[100]  E. al.,et al.  First upper limits from LIGO on gravitational wave bursts , 2003, gr-qc/0312056.

[101]  R. Marel Intermediate-Mass Black Holes in the Universe: A Review of Formation Theories and Observational Constraints , 2003, astro-ph/0302101.

[102]  Toshikazu Ebisuzaki,et al.  UvA-DARE ( Digital Academic Repository ) Missing Link Found ? The " Runaway " Path to Supermassive Black Holes , 2001 .

[103]  Chris L. Fryer,et al.  Pair-Instability Supernovae, Gravity Waves, and Gamma-Ray Transients , 2000, The Astrophysical Journal.

[104]  McMillan,et al.  Black Hole Mergers in the Universe , 1999, The Astrophysical journal.

[105]  M. Alpar Models for Pulsar Glitches , 1995 .

[106]  T W B Kibble,et al.  Topology of cosmic domains and strings , 1976 .