Effects of MgO modified β-TCP nanoparticles on the microstructure and properties of β-TCP/Mg-Zn-Zr composites

[1]  F. Witte,et al.  Biodegradable Metals , 2018, Biomaterials Science.

[2]  M. Mitrić,et al.  Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid , 2015 .

[3]  C Ganapathy,et al.  Processing and mechanical behavior of lamellar structured degradable magnesium-hydroxyapatite implants. , 2014, Journal of the mechanical behavior of biomedical materials.

[4]  Y. Xia,et al.  Improving the corrosion resistance of Mg-4.0Zn-0.2Ca alloy by micro-arc oxidation. , 2013, Materials science & engineering. C, Materials for biological applications.

[5]  Zhiming Yu,et al.  In vitro corrosion behavior and in vivo biodegradation of biomedical β-Ca3(PO4)2/Mg-Zn composites. , 2012, Acta biomaterialia.

[6]  Z. Fan,et al.  Fabrication of biodegradable nano-sized β-TCP/Mg composite by a novel melt shearing technology , 2012 .

[7]  Jie Zhou,et al.  ZK30-bioactive glass composites for orthopedic applications: A comparative study on fabrication method and characteristics , 2011 .

[8]  Yong Han,et al.  Mechanical and in vitro degradation behavior of ultrafine calcium polyphosphate reinforced magnesium-alloy composites , 2011 .

[9]  Yue Sun,et al.  Microstructure and Properties of Biodegradable β-TCP Reinforced Mg-Zn-Zr Composites , 2011 .

[10]  M. Fathi,et al.  Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications , 2010 .

[11]  Meng Yang,et al.  In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg–Zn–Zr composites , 2010, Journal of materials science. Materials in medicine.

[12]  Anneke Loos,et al.  In Vitro and In Vivo Biocompatibility Testing of Absorbable Metal Stents , 2007 .

[13]  Wei-jia Tang,et al.  On the corrosion behaviour of newly developed biodegradable Mg-based metal matrix composites produced by in situ reaction , 2012 .