New approaches towards novel composite and multilayer membranes for intermediate temperature-polymer electrolyte fuel cells and direct methanol fuel cells

Abstract This review analyses the current and existing literature on novel composite and multilayer membranes for Polymer Electrolyte Fuel Cell applications, including intermediate temperature polymer electrolyte fuel cell (IT-PEFC) and direct methanol fuel cell (DMFC) systems. It provides a concise scrutiny of the vast body of literature available on organic and inorganic filler based polymer membranes and links it to the new emerging trend towards novel combinations of multilayered polymer membranes for applications in DMFC and IT-PEFC. The paper carefully explores the advantages and disadvantages of the most common preparation techniques reported for multilayered membranes such as hot-pressing, casting and dip-coating and also summarises various other fresh and unique techniques employed for multilayer membrane preparation.

[1]  P. Hammond,et al.  Development of polyelectrolyte multilayer thin film composite membrane for water desalination application , 2013 .

[2]  M. Marrony,et al.  Multilayer Sulfonated Polyaromatic PEMFC Membranes , 2005 .

[3]  P. J. Sebastian,et al.  A modified Nafion membrane with in situ polymerized polypyrrole for the direct methanol fuel cell , 2003 .

[4]  Masayoshi Watanabe,et al.  Fabrication of protic ionic liquid/sulfonated polyimide composite membranes for non-humidified fuel cells , 2010 .

[5]  I. Nizameev,et al.  Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2015 .

[6]  W. Kim,et al.  Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell , 2014 .

[7]  J. C. Bevington,et al.  Chemical Reviews , 1970, Nature.

[8]  Tao Yang,et al.  Multilayer Membranes Based on Sulfonated Poly(Ether Ether Ketone) and Poly(Vinyl Alcohol) for Direct Methanol Membrane Fuel Cells , 2009 .

[9]  A. Manthiram,et al.  Composite membranes based on sulfonated poly(ether ether ketone) and SDBS-adsorbed graphene oxide for direct methanol fuel cells , 2012 .

[10]  B. Yi,et al.  A Novel PTFE-Reinforced Multilayer Self-Humidifying Composite Membrane for PEM Fuel Cells , 2006 .

[11]  Hongwei Zhang,et al.  Advances in the high performance polymer electrolyte membranes for fuel cells. , 2012, Chemical Society reviews.

[12]  Jooheon Kim,et al.  The effect of sulfonated graphene oxide on Sulfonated Poly (Ether Ether Ketone) membrane for direct methanol fuel cells , 2013 .

[13]  Hui Li,et al.  A review of polymer electrolyte membrane fuel cell durability test protocols , 2011 .

[14]  Journal of Computer-Aided Materials Design , 2005 .

[15]  Nam Hoon Kim,et al.  Polymer membranes for high temperature proton exchange membrane fuel cell : recent advances and challenges , 2011 .

[16]  J. Tascón,et al.  Graphene oxide dispersions in organic solvents. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[17]  Wei Wang,et al.  Journal of Materials Chemistry A-3-15148-2015 , 2015 .

[18]  Juyoung Kim,et al.  Fabrication of inorganic/polymer nanocomposite membranes containing very high silica content via in situ surface grafting reaction and reactive dispersion of silica nanoparticles: Proton conduction, water uptake, and oxidative stability , 2011 .

[19]  G. Schatz The journal of physical chemistry letters , 2009 .

[20]  Mohammad Mahdi Hasani-Sadrabadi,et al.  Nafion®/histidine functionalized carbon nanotube: High-performance fuel cell membranes , 2013 .

[21]  W. C. Tseng,et al.  (Journal of Membrane Science,233(1-2):161-167)Effect of alcohol on purification of plasmid DNA using ion-exchange membrane , 2004 .

[22]  M. Casciola,et al.  Conductivity and hydration of sulfonated polyethersulfone in the range 70–120 °C: Effect of temperature and relative humidity cycling , 2012 .

[23]  Manuel Maréchal,et al.  From polymer chemistry to membrane elaboration: A global approach of fuel cell polymeric electrolytes , 2006 .

[24]  Martin Pumera,et al.  Electrochemistry of graphene, graphene oxide and other graphenoids: Review , 2013 .

[25]  Yun Wang,et al.  A review of polymer electrolyte membrane fuel cells: Technology, applications,and needs on fundamental research , 2011 .

[26]  G. Pugazhenthi,et al.  Development of sulfonated poly(ether ether ketone)/zirconium titanium phosphate composite membranes for direct methanol fuel cell , 2012 .

[27]  Merlin L. Bruening,et al.  Ultrathin, Multilayered Polyelectrolyte Films as Nanofiltration Membranes , 2003 .

[28]  J. Nam,et al.  Depression of methanol-crossover using multilayer proton conducting membranes prepared by layer-by-layer deposition onto a porous polyethylene film , 2006 .

[29]  E. Rideal,et al.  Fuel Cells , 1958, Nature.

[30]  T. Zhao,et al.  A sandwich structured membrane for direct methanol fuel cells operating with neat methanol , 2013 .

[31]  S. Jiang,et al.  A novel phosphotungstic acid impregnated meso-Nafion multilayer membrane for proton exchange membrane fuel cells , 2013 .

[32]  Qing Tang,et al.  Graphene-related nanomaterials: tuning properties by functionalization. , 2013, Nanoscale.

[33]  Sang‐young Lee,et al.  Multilayer-structured, SiO2/sulfonated poly(phenylsulfone) composite membranes for proton exchange membrane fuel cells , 2012 .

[34]  I. C. Mcneill,et al.  Polymer Chemistry , 1961, Nature.

[35]  A. M. Rocco,et al.  Poly(styrene-co-acrylonitrile) based proton conductive membranes , 2008 .

[36]  Ming Zhao,et al.  The degradation study of Nafion/PTFE composite membrane in PEM fuel cell under accelerated stress tests , 2014 .

[37]  侯恩哲,et al.  ' s personal copy Virtual models of indoor-air-quality sensors , 2010 .

[38]  S. Paddison,et al.  Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. , 2004, Chemical reviews.

[39]  The Electrochemical Society and the Kilgore Bill , 1943, Science.

[40]  D. Jung,et al.  Enhanced transport properties in polymer electrolyte composite membranes with graphene oxide sheets , 2012 .

[41]  Wencong Liu,et al.  Crosslinked organic/inorganic proton exchange membranes with multilayer structure , 2012 .

[42]  Chris D. Geddes,et al.  Physical Chemistry Chemical Physics , 2013 .

[43]  S. Jiang,et al.  Layer-by-layer self-assembly of PDDA/PWA-Nafion composite membranes for direct methanol fuel cells. , 2010, Chemical communications.

[44]  P. Hammond,et al.  Highly Conductive, Methanol Resistant Polyelectrolyte Multilayers , 2008 .

[45]  Z. Murthy,et al.  TiO2 nanoparticles synthesis for application in proton exchange membranes , 2013 .

[46]  K. Imahori,et al.  PROGRESS IN POLYMER SCIENCE, JAPAN, VOLUME 1. , 1971 .

[47]  S. Rowshanzamir,et al.  Review of the proton exchange membranes for fuel cell applications , 2010 .

[48]  C. W. Lin,et al.  Highly ordered graphene oxide paper laminated with a Nafion membrane for direct methanol fuel cells , 2013 .

[49]  D. Gournis,et al.  Investigation of layered double hydroxide (LDH) Nafion-based nanocomposite membranes for high temperature PEFCs , 2015 .

[50]  R. Kannan,et al.  Artificially designed membranes using phosphonated multiwall carbon nanotube-polybenzimidazole composites for polymer electrolyte fuel cells , 2010 .

[51]  B. Hwang,et al.  A new graphene-modified protic ionic liquid-based composite membrane for solid polymer electrolytes , 2011 .

[52]  F. Jiang,et al.  Ultra-thin, flexible organic/inorganic multilayer proton-conducting membrane , 2011 .

[53]  S. Dai,et al.  Porous graphene as the ultimate membrane for gas separation. , 2009, Nano letters.

[54]  Jung-Hyun Lee,et al.  Composite proton exchange membranes from zirconium‐based solid acids and PVDF/acrylic polyelectrolyte blends , 2012 .

[55]  Hideto Matsuyama,et al.  Simultaneous improvement of the monovalent anion selectivity and antifouling properties of an anion exchange membrane in an electrodialysis process, using polyelectrolyte multilayer deposition , 2013 .

[56]  M. Bruening,et al.  High-flux nanofiltration membranes prepared by adsorption of multilayer polyelectrolyte membranes on polymeric supports. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[57]  D. Sangeetha,et al.  Multilayered sulphonated polysulfone/silica composite membranes for fuel cell applications , 2012 .

[58]  David P. Wilkinson,et al.  High temperature PEM fuel cells , 2006 .

[59]  R. G. Evans,et al.  Non-haloaluminate room-temperature ionic liquids in electrochemistry--a review. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[60]  G. Shi,et al.  Graphene/polymer composites for energy applications , 2013 .

[61]  D. Wilkinson,et al.  Degradation of polymer electrolyte membranes , 2006 .

[62]  J. Benziger,et al.  Nafion-layered sulfonated polysulfone fuel cell membranes , 2005 .

[63]  J. C. Bevington European polymer journal: A brief history , 1988 .

[64]  B. Yi,et al.  Novel multilayer Nafion/SPI/Nafion composite membrane for PEMFCs , 2007 .

[65]  Hsiu-Li Lin,et al.  Nafion/poly(vinyl alcohol) nano-fiber composite and Nafion/poly(vinyl alcohol) blend membranes for direct methanol fuel cells , 2014 .

[66]  Chenxi Sun,et al.  Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery , 2008 .

[67]  H. Na,et al.  Low water swelling and high methanol resistant proton exchange membrane fabricated by cross-linking of multilayered polyelectrolyte complexes , 2009 .

[68]  Wei Liu,et al.  A proton exchange membrane fabricated from a chemically heterogeneous nonwoven with sandwich structure by the program-controlled co-electrospinning process. , 2012, Chemical communications.

[69]  R. Huggins Solid State Ionics , 1989 .

[70]  Lu Ouyang,et al.  Multilayer polyelectrolyte films as nanofiltration membranes for separating monovalent and divalent cations , 2008 .

[71]  Keith Scott,et al.  A poly (ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells , 2011 .

[72]  Jingwei Hu,et al.  Preparation and characterization of sulfated zirconia (SO42−/ZrO2)/Nafion composite membranes for PEMFC operation at high temperature/low humidity , 2006 .

[73]  W. Lehnert,et al.  Accelerated Degradation of High-Temperature Polymer Electrolyte Fuel Cells: Discussion and Empirical Modeling , 2015 .

[74]  P. Cañizares,et al.  Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes , 2015 .

[75]  Antonio Fábio,et al.  Polymer , 2018, Definitions.

[76]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[77]  Roberto F. de Souza,et al.  Ionic liquids in proton exchange membrane fuel cells: Efficient systems for energy generation , 2010 .

[78]  Y. Chen-Yang,et al.  Microwave-assisted synthesis of silica aerogel supported pt nanoparticles for self-humidifying proton exchange membrane fuel cell , 2012 .

[79]  E. Quartarone,et al.  Composite Proton‐Conducting Membranes for PEMFCs , 2007 .

[80]  Preparation and properties of Nafion/SiO2 composite membrane derived via in situ sol–gel reaction: size controlling and size effects of SiO2 nano-particles , 2012 .

[81]  B. Smitha,et al.  Solid polymer electrolyte membranes for fuel cell applications¿a review , 2005 .

[82]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[83]  Hsiu-Li Lin,et al.  Nafion/PTFE and zirconium phosphate modified Nafion/PTFE composite membranes for direct methanol fuel cells , 2008 .

[84]  Kriangsak Ketpang,et al.  Porous zirconium oxide nanotube modified Nafion composite membrane for polymer electrolyte membrane fuel cells operated under dry conditions , 2015 .

[85]  S. Lue,et al.  Polytetrafluoroethylene (PTFE)/silane cross-linked sulfonated poly(styrene–ethylene/butylene–styrene) (sSEBS) composite membrane for direct alcohol and formic acid fuel cells , 2014 .

[86]  Hongwei Zhang,et al.  Recent development of polymer electrolyte membranes for fuel cells. , 2012, Chemical reviews.

[87]  Yuhou Wu,et al.  Proton transfer mechanism in perfluorinated sulfonic acid polytetrafluoroethylene , 2012 .

[88]  Qingfeng Li,et al.  Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C , 2003 .

[89]  S. Kamarudin,et al.  Nafion/Pd–SiO2 nanofiber composite membranes for direct methanol fuel cell applications , 2013 .

[90]  Y. Devrim Preparation and testing of Nafion/titanium dioxide nanocomposite membrane electrode assembly by ultrasonic coating technique , 2014 .

[91]  R. Ruoff,et al.  The chemistry of graphene oxide. , 2010, Chemical Society reviews.

[92]  Stephen Ducharme,et al.  Ferroelectrics: Start the presses. , 2009, Nature materials.

[93]  Bernhard Wietek Fibers , 1963, Fiber Concrete.

[94]  B. Yi,et al.  Sulfonated polyimide/PTFE reinforced membrane for PEMFCs , 2007 .

[95]  Jean-Claude Tarby :I'M , 2013, Universal Algebra and Applications in Theoretical Computer Science.

[96]  A. Russell Physical Chemistry Chemical Physics This paper is published as part of a PCCP Themed Issue on , 2008 .

[97]  Shanfu Lu,et al.  Polytetrafluoroethylene (PTFE) reinforced poly(ethersulphone)–poly(vinyl pyrrolidone) composite membrane for high temperature proton exchange membrane fuel cells , 2014 .

[98]  Pierre Aimar,et al.  Polyelectrolyte multilayer films as backflushable nanofiltration membranes with tunable hydrophilicity and surface charge , 2010 .

[99]  D. Gesellschaft Berichte der Deutschen Chemischen Gesellschaft zu Berlin , 1868 .

[100]  C. W. Lin,et al.  Preparation and performance of sulfonated polyimide/Nafion multilayer membrane for proton exchange membrane fuel cell , 2012 .

[101]  Cong-jie Gao,et al.  Polyelectrolyte complex membranes for pervaporation, nanofiltration and fuel cell applications , 2011 .

[102]  B. Yi,et al.  Pt/SiO2 as addition to multilayer SPSU/PTFE composite membrane for fuel cells , 2008 .

[103]  A. Manthiram,et al.  Multilayered membranes with suppressed fuel crossover for direct methanol fuel cells , 2004 .

[104]  P. Singh,et al.  Nanostructured Ionomeric Membranes for Direct Methanol Fuel Cell , 2015 .

[105]  H. Na,et al.  A facile approach to prepare self-cross-linkable sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells , 2010 .

[106]  V. Choudhary,et al.  A study of new anhydrous, conducting membranes based on composites of aprotic ionic liquid and cross-linked SPEEK for fuel cell application , 2015 .

[107]  F. Nüesch,et al.  Release of Carbon Nanotubes from Polymer Nanocomposites , 2014 .

[108]  A. Durmuş,et al.  A novel approach for highly proton conductive electrolyte membranes with improved methanol barrier properties: Layer-by-Layer assembly of salt containing polyelectrolytes , 2009 .

[109]  I. S. Turan,et al.  RSC Advances , 2015 .

[110]  G. Baker,et al.  Facilitated ion transport through polyelectrolyte multilayer films containing metal-binding ligands , 2014 .

[111]  Zhenhua Jiang,et al.  Triple-layer sulfonated poly(ether ether ketone)/sulfonated polyimide membranes for fuel cell applications , 2014 .

[112]  Qifeng Zhang,et al.  Assembly of an unbalanced charged polyampholyte onto Nafion® to produce high-performance composite membranes. , 2012, Chemical communications.

[113]  K. Scott,et al.  Graphite oxide/Nafion composite membranes for polymer electrolyte fuel cells , 2012 .

[114]  H. Na,et al.  Layer-by-layer self-assembly of in situ polymerized polypyrrole on sulfonated poly(arylene ether ketone) membrane with extremely low methanol crossover , 2009 .

[115]  M. M. Hasani-Sadrabadi,et al.  A high-performance chitosan-based double layer proton exchange membrane with reduced methanol crossover , 2011 .

[116]  S. Jiang,et al.  Methanol crossover reduction by Nafion modification via layer-by-layer self-assembly techniques , 2012 .

[117]  Minoru Inaba,et al.  Gas crossover and membrane degradation in polymer electrolyte fuel cells , 2006 .

[118]  He Bai,et al.  Recent developments in fuel-processing and proton-exchange membranes for fuel cells , 2011 .

[119]  K. Scott,et al.  A polybenzimidazole/ionic-liquid-graphite-oxide composite membrane for high temperature polymer electrolyte membrane fuel cells , 2015 .

[120]  B. Maheswara Rao,et al.  International Journal of Research in Advent Technology , 2022 .

[121]  J. Lai,et al.  Nanocomposite membranes of Nafion and Fe3O4-anchored and Nafion-functionalized multiwalled carbon nanotubes exhibiting high proton conductivity and low methanol permeability for direct methanol fuel cells , 2013 .

[122]  J. W.,et al.  The Journal of Physical Chemistry , 1900, Nature.

[123]  Qinghong Huang,et al.  An effective methanol-blocking membrane modified with graphene oxide nanosheets for passive direct methanol fuel cells , 2014 .

[124]  Claude Etievant,et al.  GenHyPEM: A research program on PEM water electrolysis supported by the European Commission , 2009 .

[125]  Ibrahim Dincer,et al.  A review on methanol crossover in direct methanol fuel cells: challenges and achievements , 2011 .

[126]  S. Ray,et al.  Recent Progress on Nafion-Based Nanocomposite Membranes for Fuel Cell Applications , 2009 .

[127]  H. Na,et al.  Layer-by-layer self-assembly of polyaniline on sulfonated poly(arylene ether ketone) membrane with high proton conductivity and low methanol crossover , 2010 .

[128]  B. Yi,et al.  Ionic-liquid-based proton conducting membranes for anhydrous H2/Cl2 fuel-cell applications. , 2014, ACS applied materials & interfaces.

[129]  Keith Scott,et al.  Intermediate temperature proton‐conducting membrane electrolytes for fuel cells , 2014 .

[130]  E. Spohr Proton generation and transport in the fuel cell environment: atomistic computer simulations , 2007 .

[131]  Bent Sørensen,et al.  Hydrogen and Fuel Cells , 2005 .

[132]  Journal of Applied Polymer Science , 1959, Nature.

[133]  Maryam Yazdanpour,et al.  Self-humidifying nanocomposite membranes based on sulfonated poly(ether ether ketone) and heteropoly , 2011 .

[134]  Hsiu-Li Lin,et al.  Nafion/PTFE/silicate composite membranes for direct methanol fuel cells , 2006 .

[135]  Young Taik Hong,et al.  Crosslinked sulfonated poly(arylene ether sulfone) membranes for fuel cell application , 2012 .

[136]  M. Hickner,et al.  Alternative polymer systems for proton exchange membranes (PEMs). , 2004, Chemical reviews.

[137]  Jun Shen,et al.  A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies , 2008 .

[138]  Jianbo Lu,et al.  polymers for advanced technologies , 2009 .

[139]  C. Oueiny,et al.  Carbon nanotube–polyaniline composites , 2014 .

[140]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[141]  Dongyuan Zhao,et al.  Journal of Colloid and Interface Science. Editorial. , 2014, Journal of colloid and interface science.

[142]  S. Moon,et al.  Facile surface modification of anion-exchange membranes for improvement of diffusion dialysis performance. , 2014, Journal of colloid and interface science.

[143]  Serdar Erkan,et al.  Nafion/titanium silicon oxide nanocomposite membranes for PEM fuel cells , 2013 .

[144]  Jedeok Kim,et al.  Solvent casting effects of sulfonated poly(ether ether ketone) for Polymer electrolyte membrane fuel cell , 2012 .

[145]  Ying‐Ling Liu Developments of highly proton-conductive sulfonated polymers for proton exchange membrane fuel cells , 2012 .

[146]  G. Voth,et al.  Proton solvation and transport in hydrated nafion. , 2011, The journal of physical chemistry. B.

[147]  A. Manthiram,et al.  Sulfonated poly(arylene ether sulfone) as a methanol-barrier layer in multilayer membranes for direct methanol fuel cells , 2010 .

[148]  Andrew B. Bocarsly,et al.  Silicon Oxide Nafion Composite Membranes for Proton-Exchange Membrane Fuel Cell Operation at 80-140°C , 2002 .

[149]  Yu Jun,et al.  Functionalized Graphene Oxide Nanocomposite Membrane for Low Humidity and High Temperature Proton Exchange Membrane Fuel Cells , 2011 .

[150]  Guojun Zhang,et al.  Rapid assembly of polyelectrolyte multilayer membranes using an automatic spray system , 2013 .

[151]  K. Jacob,et al.  Triple-layer proton exchange membranes based on chitosan biopolymer with reduced methanol crossover for high-performance direct methanol fuel cells application , 2012 .

[152]  Rafael Reif,et al.  Electrochemical and Solid-Sates Letters , 1999 .

[153]  Boris E. Burakov,et al.  Advanced Materials , 2019, Springer Proceedings in Physics.

[154]  W. Kim,et al.  Self-humidifying Pt–graphene/SiO2 composite membrane for polymer electrolyte membrane fuel cell , 2015 .

[155]  Gaowen Zhang,et al.  High proton conducting SPEEK/SiO2/PWA composite membranes for direct methanol fuel cells , 2011 .

[156]  Luis Gerardo Arriaga,et al.  Composites membranes based on Nafion and PAMAM dendrimers for PEMFC applications , 2014 .

[157]  K. Scott,et al.  A PFSA Composite Membrane with Sulfonic Acid Functionalized TiO2 Nanotubes for Polymer Electrolyte Fuel Cells and Water Electrolysers , 2013 .

[158]  V. Antonucci,et al.  Design of efficient methanol impermeable membranes for fuel cell applications. , 2012, Physical chemistry chemical physics : PCCP.

[159]  D. Jung,et al.  Innovative polymer nanocomposite electrolytes: nanoscale manipulation of ion channels by functionalized graphenes. , 2011, ACS nano.

[160]  G. Jung,et al.  Nafion/PTFE composite membranes for direct methanol fuel cell applications , 2005 .

[161]  Chuanglong He,et al.  High Performance Polymers , 2002 .

[162]  Li-Duan Tsai,et al.  Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells , 2013 .