Fractional Pais–Uhlenbeck Oscillator

[1]  I. Petráš Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation , 2011 .

[2]  A. Mostafazadeh A Hamiltonian formulation of the Pais–Uhlenbeck oscillator that yields a stable and unitary quantum system , 2010, 1008.4678.

[3]  D. Baleanu,et al.  Fedosov Quantization of Fractional Lagrange Spaces , 2010, 1006.5538.

[4]  Dumitru Baleanu,et al.  A Fractional Schrödinger Equation and Its Solution , 2010 .

[5]  Dumitru Baleanu,et al.  Is It Possible to Derive Newtonian Equations of Motion with Memory? , 2010 .

[6]  Yangquan Chen,et al.  Matrix approach to discrete fractional calculus II: Partial fractional differential equations , 2008, J. Comput. Phys..

[7]  C. Bender,et al.  Exactly solvable PT-symmetric Hamiltonian having no Hermitian counterpart , 2008, 0804.4190.

[8]  C. Bender,et al.  No-ghost theorem for the fourth-order derivative Pais-Uhlenbeck oscillator model. , 2007, Physical review letters.

[9]  Jacky Cresson,et al.  Fractional embedding of differential operators and Lagrangian systems , 2006, math/0605752.

[10]  Santanu Saha Ray,et al.  Analytical solution of the Bagley Torvik equation by Adomian decomposition method , 2005, Appl. Math. Comput..

[11]  Kamel Al-khaled,et al.  Numerical solutions for systems of fractional differential equations by the decomposition method , 2005, Appl. Math. Comput..

[12]  P. Mannheim,et al.  Dirac quantization of the Pais-Uhlenbeck fourth order oscillator (9 pages) , 2004, hep-th/0408104.

[13]  D. Baleanu,et al.  Lagrangians with linear velocities within Riemann-Liouville fractional derivatives , 2004, math-ph/0405012.

[14]  Malgorzata Klimek,et al.  Lagrangean and Hamiltonian fractional sequential mechanics , 2002 .

[15]  N. Ford,et al.  Numerical Solution of the Bagley-Torvik Equation , 2002, BIT Numerical Mathematics.

[16]  Om P. Agrawal,et al.  Formulation of Euler–Lagrange equations for fractional variational problems , 2002 .

[17]  Riewe,et al.  Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[19]  G. Uhlenbeck,et al.  On Field Theories with Non-Localized Action , 1950 .

[20]  W. Thirring Regularization as a Consequence of Higher Order Equations , 1950 .

[21]  S. Momani,et al.  AN ALGORITHM FOR THE NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER , 2008 .

[22]  I. Podlubny Matrix Approach to Discrete Fractional Calculus , 2000 .

[23]  K. Diethelm AN ALGORITHM FOR THE NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER , 1997 .

[24]  F. Mainardi,et al.  Fractals and fractional calculus in continuum mechanics , 1997 .