Orderly Spanning Trees with Applications

We introduce and study orderly spanning trees of plane graphs. This algorithmic tool generalizes canonical orderings, which exist only for triconnected plane graphs. Although not every plane graph admits an orderly spanning tree, we provide an algorithm to compute an orderly pair for any connected planar graph G, consisting of an embedded planar graph H isomorphic to G, and an orderly spanning tree of H. We also present several applications of orderly spanning trees: (1) a new constructive proof for Schnyder's realizer theorem, (2) the first algorithm for computing an area-optimal 2-visibility drawing of a planar graph, and (3) the most compact known encoding of a planar graph with O(1)-time query support. All algorithms in this paper run in linear time.

[1]  Hsueh-I Lu,et al.  Compact floor-planning via orderly spanning trees , 2003, J. Algorithms.

[2]  J. Ian Munro,et al.  Succinct Representation of Balanced Parentheses and Static Trees , 2002, SIAM J. Comput..

[3]  W. Trotter,et al.  Combinatorics and Partially Ordered Sets: Dimension Theory , 1992 .

[4]  Cyril Gavoille,et al.  Compact Routing Tables for Graphs of Bounded Genus , 1999, ICALP.

[5]  P. Boas Machine models and simulations , 1991 .

[6]  György Turán,et al.  On the succinct representation of graphs , 1984, Discret. Appl. Math..

[7]  Xin He,et al.  A Fast General Methodology for Information - Theoretically Optimal Encodings of Graphs , 1999, ESA.

[8]  Mikkel Thorup,et al.  Undirected single source shortest paths in linear time , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[9]  Roberto Tamassia,et al.  Reinventing the wheel: an optimal data structure for connectivity queries , 1993, STOC.

[10]  Thomas C. Shermer,et al.  On representations of some thickness-two graphs , 1995, Comput. Geom..

[11]  W. Schnyder Planar graphs and poset dimension , 1989 .

[12]  Maurizio Talamo,et al.  Compact Implicit Representation of Graphs , 1998, WG.

[13]  Venkatesh Raman,et al.  Representing dynamic binary trees succinctly , 2001, SODA '01.

[14]  Majid Sarrafzadeh,et al.  Floor-Planning by Graph Dualization: 2-Concave Rectilinear Modules , 1993, SIAM J. Comput..

[15]  Xin He,et al.  Compact Encodings of Planar Graphs via Canonical Orderings and Multiple Parentheses , 1998, ICALP.

[16]  Peter Elias,et al.  Universal codeword sets and representations of the integers , 1975, IEEE Trans. Inf. Theory.

[17]  Prosenjit Bose,et al.  On Rectangle Visibility Graphs , 1996, GD.

[18]  Mihalis Yannakakis,et al.  A Note on Succinct Representations of Graphs , 1986, Inf. Control..

[19]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[20]  Mikkel Thorup,et al.  On RAM priority queues , 1996, SODA '96.

[21]  Hsueh-I Lu,et al.  Linear-time compression of bounded-genus graphs into information-theoretically optimal number of bits , 2002, SODA '02.

[22]  F. Leighton,et al.  Drawing Planar Graphs Using the Canonical Ordering , 1996 .

[23]  Roberto Grossi,et al.  Simple Planar Graph Partition into Three Forests , 1998, Discret. Appl. Math..

[24]  Venkatesh Raman,et al.  Succinct representation of balanced parentheses, static trees and planar graphs , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[25]  Avi Wigderson,et al.  Succinct Representations of Graphs , 1984, Inf. Control..

[26]  Hsueh-I Lu,et al.  Improved Compact Visibility Representation of Planar Graph via Schnyder's Realizer , 2002, SIAM J. Discret. Math..

[27]  Sue Whitesides,et al.  Proceedings of the 6th International Symposium on Graph Drawing , 1998 .

[28]  Mihalis Yannakakis,et al.  Embedding Planar Graphs in Four Pages , 1989, J. Comput. Syst. Sci..

[29]  Walter Schnyder,et al.  Embedding planar graphs on the grid , 1990, SODA '90.

[30]  Christos D. Zaroliagis,et al.  Efficient Computation of Implicit Representations of Sparse Graphs , 1997, Discret. Appl. Math..

[31]  Moni Naor Succinct representation of general unlabeled graphs , 1990, Discret. Appl. Math..

[32]  David Harel,et al.  An Algorithm for Straight-Line Drawing of Planar Graphs , 1995, Algorithmica.

[33]  Jeffery R. Westbrook,et al.  Short Encodings of Planar Graphs and Maps , 1995, Discret. Appl. Math..

[34]  Jarek Rossignac,et al.  Edgebreaker: Connectivity Compression for Triangle Meshes , 1999, IEEE Trans. Vis. Comput. Graph..

[35]  Marek Chrobak,et al.  Minimum-width grid drawings of plane graphs , 1994, Comput. Geom..

[36]  J. Davenport Editor , 1960 .

[37]  Alon Itai,et al.  Representation of graphs , 1982, Acta Informatica.

[38]  W. T. Tutte,et al.  A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.

[39]  John M. Boyer,et al.  Stop minding your p's and q's: a simplified O(n) planar embedding algorithm , 1999, SODA '99.

[40]  Joan P. Hutchinson,et al.  Rectangle-visibility Representations of Bipartite Graphs , 1994, Discret. Appl. Math..

[41]  Xin He,et al.  On Floor-Plan of Plane Graphs , 1999, SIAM J. Comput..

[42]  Marek Chrobak,et al.  A Linear-Time Algorithm for Drawing a Planar Graph on a Grid , 1995, Inf. Process. Lett..

[43]  Hsueh-I Lu,et al.  Some Applications of Orderly Spanning Trees in Graph Drawing , 2002, Graph Drawing.

[44]  Peter van Emde Boas,et al.  Machine Models and Simulation , 1990, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[45]  Joan P. Hutchinson,et al.  Journal of Graph Algorithms and Applications Rectangle-visibility Layouts of Unions and Products of Trees , 2022 .

[46]  W. T. Tutte A Census of Planar Maps , 1963, Canadian Journal of Mathematics.

[47]  Goos Kant,et al.  2-Visibility Drawings of Planar Graphs , 1996, GD.

[48]  David Richard Clark,et al.  Compact pat trees , 1998 .

[49]  Guy Jacobson,et al.  Space-efficient static trees and graphs , 1989, 30th Annual Symposium on Foundations of Computer Science.

[50]  Mihalis Yannakais,et al.  Embedding planar graphs in four pages , 1989, STOC 1989.

[51]  Xin He,et al.  Linear-Time Succinct Encodings of Planar Graphs via Canonical Orderings , 1999, SIAM J. Discret. Math..

[52]  Nicolas Bonichon,et al.  An Information-Theoretic Upper Bound of Planar Graphs Using Triangulation , 2003, STACS.

[53]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[54]  Ming-Yang Kao,et al.  Simple and Efficient Graph Compression Schemes for Dense and Complement Graphs , 1998, J. Comb. Optim..

[55]  J. Ian Munro,et al.  Membership in Constant Time and Almost-Minimum Space , 1999, SIAM J. Comput..

[56]  Hsueh-I Lu Improved Compact Routing Tables for Planar Networks via Orderly Spanning Trees , 2002, COCOON.

[57]  Xin He,et al.  A Fast General Methodology for Information-Theoretically Optimal Encodings of Graphs , 2000, SIAM J. Comput..

[58]  Goos Kant,et al.  Regular Edge Labeling of 4-Connected Plane Graphs and Its Applications in Graph Drawing Problems , 1997, Theor. Comput. Sci..

[59]  Michael L. Fredman,et al.  Trans-dichotomous algorithms for minimum spanning trees and shortest paths , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[60]  Moni Naor,et al.  Implicit representation of graphs , 1992, STOC '88.

[61]  Ming-Yang Kao,et al.  Simple and Efficient Graph Compression Schemes for Dense and Complement Graphs , 1994, ISAAC.

[62]  Hsueh-I Lu,et al.  Floor-Planning via Orderly Spanning Trees , 2001, Graph Drawing.

[63]  Goos Kant,et al.  Drawing planar graphs using the canonical ordering , 1996, Algorithmica.

[64]  Wojciech A. Trybulec Partially Ordered Sets , 1990 .