Tuneable Metacomposites Based on Functional Fillers

[1]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[2]  M. González 7. Results and Discussion , 2001 .

[3]  O.G. Vendik,et al.  Artificial double negative (DNG) media composed by two different dielectric sphere lattices embedded in a dielectric matrix , 2004, 34th European Microwave Conference, 2004..

[4]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[5]  R. Murakami,et al.  Effect of an interface charge density wave on surface plasmon resonance in ZnO/Ag/ZnO thin films , 2010 .

[6]  N. A. Siddiqui,et al.  DISPERSION AND FUNCTIONALIZATION OF CARBON NANOTUBES FOR POLYMER-BASED NANOCOMPOSITES: A REVIEW , 2010 .

[7]  Weili Zhang,et al.  Transmission properties of terahertz pulses through subwavelength double split-ring resonators. , 2006, Optics letters.

[8]  A. Rempel,et al.  Atomic defects in hexagonal tungsten carbide studied by positron annihilation , 2000 .

[9]  J. Rogers,et al.  Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. , 2011, Nature nanotechnology.

[10]  D. Pines A Collective Description of Electron Interactions: II. Collective vs Individual Particle Aspects of the Interactions , 1952 .

[11]  J. Stewart Aitchison,et al.  Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies , 2005 .

[12]  A. Kurlov,et al.  MICROSTRUCTURE OF NANOCRYSTALLINE WC POWDERS AND WC-Co HARD ALLOYS , 2011 .

[13]  W. Schröter,et al.  High-Temperature Properties of Transition Elements in Silicon , 2013 .

[14]  J. Bonache,et al.  Novel microstrip bandpass filters based on complementary split-ring resonators , 2006, IEEE Transactions on Microwave Theory and Techniques.

[15]  C. Brosseau,et al.  Magnetic field-dependent effective microwave properties of microwire- epoxy composites , 2012 .

[16]  D. Lang Space-charge spectroscopy in semiconductors , 1979 .

[17]  Martin Wegener,et al.  Experiments on elastic cloaking in thin plates. , 2012, Physical review letters.

[18]  Longwei Yin,et al.  Experimental and theoretical investigation on the high frequency dielectric properties of Ag/Al2O3 composites , 2011 .

[19]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[20]  V. Shalaev,et al.  Fabrication of optical negative-index metamaterials: Recent advances and outlook , 2008 .

[21]  Mihail Ipatov,et al.  Co-based magnetic microwire and field-tunable multifunctional macro-composites , 2009 .

[22]  R. Gonzalo,et al.  On the effective permittivity of arrays of ferromagnetic wires , 2011 .

[23]  Mario Sorolla,et al.  Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications , 2013 .

[24]  C. Keresztes 5. Results and discussion , 2013 .

[25]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[26]  Zhanhu Guo,et al.  Polyaniline-tungsten oxide metacomposites with tunable electronic properties , 2011 .

[27]  L. Kong,et al.  Microwave Permeability of Ferromagnetic Microwires Composites/Metamaterials and Potential Applications , 2008, IEEE Transactions on Magnetics.

[28]  N. Fang,et al.  New Frontiers of Metamaterials: Design and Fabrication , 2008 .

[29]  Qiang Wang,et al.  Polypyrrole metacomposites with different carbon nanostructures , 2012 .

[30]  Huanyang Chen,et al.  Acoustic cloaking in three dimensions using acoustic metamaterials , 2007 .

[31]  F. Qin,et al.  Ferromagnetic microwires enabled multifunctional composite materials , 2013 .

[32]  R. Gonzalo,et al.  Electromagnetic response and homogenization of grids of ferromagnetic microwires , 2011 .

[33]  U. Sundararaj,et al.  Big returns from small fibers: A review of polymer/carbon nanotube composites , 2004 .

[34]  Valentina Zhukova,et al.  Novel magnetic microwires-embedded composites for structural health monitoring applications , 2010 .

[35]  Ji Zhou,et al.  Realization of negative permittivity of Co2Z hexagonal ferrite and left-handed property of ferrite composite material , 2009 .

[36]  Ari Sihvola,et al.  Metamaterials in electromagnetics , 2007 .

[37]  Zhanhu Guo,et al.  Polyaniline Nanocomposites with Negative Permittivity , 2013 .

[38]  H. Chiriac,et al.  Ferromagnetic resonance of transversally magnetized amorphous microwires and nanowires , 2013 .

[39]  B. Li,et al.  Single Negative Metamaterials in Unstructured Polymer Nanocomposites Toward Selectable and Controllable Negative Permittivity , 2009 .

[40]  David R. Smith,et al.  A full-parameter unidirectional metamaterial cloak for microwaves. , 2013, Nature materials.

[41]  Bo Li,et al.  Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite. , 2008, Physical review letters.

[42]  C. Holloway,et al.  A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix , 2003 .

[43]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[44]  D. R. Smith,et al.  Transformation Optics and Subwavelength Control of Light , 2012, Science.

[45]  M. Vázquez,et al.  Glass-coated amorphous ferromagnetic microwires at microwave frequencies , 2009 .

[46]  C. Brosseau,et al.  Two-peak feature of the permittivity spectra of ferromagnetic microwire/rubber composites , 2013 .

[47]  P H Krebsbach,et al.  Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. , 2003, Biomaterials.

[48]  L. Toth Transition Metal Carbides and Nitrides , 1971 .

[49]  Steven A. Cummer,et al.  A microwave metamaterial with integrated power harvesting functionality , 2013 .

[50]  K. Hatakeyama,et al.  Permeability spectra of yttrium iron garnet and its granular composite materials under dc magnetic field , 2011 .

[51]  A. Zhukov,et al.  Experimental demonstration of tunable scattering spectra at microwave frequencies in composite media containing CoFeCrSiB glass-coated amorphous ferromagnetic wires and comparison with theory , 2006 .

[52]  G. G. Bush The complex permeability of a high purity yttrium iron garnet (YIG) sputtered thin film , 1993 .

[53]  Anthony Kelly,et al.  Composites in context , 1985 .

[54]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[55]  D. P. Makhnovskiy,et al.  Tunable and Self-Sensing Microwave Composite Materials Incorporating Ferromagnetic Microwires , 2008 .

[56]  D. Polder,et al.  On the theory of ferromagnetic resonance , 1949 .

[57]  T. Chou,et al.  Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites , 2006 .

[58]  Eleftherios N. Economou,et al.  Left-handed metamaterials: The fishnet structure and its variations , 2007 .

[59]  Jiahua Zhu,et al.  Carbon nanostructure-derived polyaniline metacomposites: electrical, dielectric, and giant magnetoresistive properties. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[60]  F. Aznar,et al.  Open Complementary Split Ring Resonators (OCSRRs) and Their Application to Wideband CPW Band Pass Filters , 2009, IEEE Microwave and Wireless Components Letters.

[61]  E. Ulin-Avila,et al.  Three-dimensional optical metamaterial with a negative refractive index , 2008, Nature.

[62]  D. Pines A Collective Description of-Electron Interactions: III. Coulomb Interactions in a Degenerate Electron Gas , 1953 .

[63]  G. G. Bush Functional dependence of the real part of the initial permeability of the YIG family of ferrites , 1990 .

[64]  Tsu-Wei Chou,et al.  Nanocomposites in context , 2005 .

[65]  Valentina Zhukova,et al.  Fe-based ferromagnetic microwires enabled meta-composites , 2013 .

[66]  S. Sprenger 3 – Results and Discussion , 2016 .

[67]  M. van Hecke,et al.  Programmable mechanical metamaterials. , 2014, Physical review letters.

[68]  Zhiping Luo,et al.  Magnetic graphene nanocomposites: electron conduction, giant magnetoresistance and tunable negative permittivity , 2012 .

[69]  Willie J. Padilla,et al.  Electromagnetic Metamaterials for Terahertz Applications , 2008 .

[70]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[71]  E. Weber,et al.  Transition Metal Impurities in Silicon , 1982 .

[72]  Michelle L. Povinelli,et al.  Negative effective permeability in polaritonic photonic crystals , 2004 .

[73]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[74]  Runhua Fan,et al.  High‐Frequency Negative Permittivity from Fe/Al2O3 Composites with High Metal Contents , 2012 .

[75]  Jianfei Sun,et al.  Combined current-modulation annealing induced enhancement of giant magnetoimpedance effect of Co-rich amorphous microwires , 2014 .

[76]  Mihail Ipatov,et al.  Exceptional electromagnetic interference shielding properties of ferromagnetic microwires enabled polymer composites , 2010 .

[77]  John B. Pendry,et al.  Photonic band-gap effects and magnetic activity in dielectric composites , 2002 .

[78]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[79]  Christopher R. Bowen,et al.  Electromechanical Properties in Composites Based on Ferroelectrics , 2008 .

[80]  U Zeitler,et al.  Room-Temperature Quantum Hall Effect in Graphene , 2007, Science.

[81]  Impedance and surface impedance of ferromagnetic multilayers: the role of exchange interaction , 2001 .

[82]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[83]  Jorge Carbonell,et al.  Double negative metamaterials based on ferromagnetic microwires , 2010 .

[84]  F. Qin,et al.  Mechanical and magnetocaloric properties of Gd-based amorphous microwires fabricated by melt-extraction , 2013 .

[85]  M. Wegener,et al.  An elasto-mechanical unfeelability cloak made of pentamode metamaterials , 2014, Nature Communications.

[86]  K. Hsieh,et al.  Electrical Properties of Well-Dispersed Nanopolyaniline/Epoxy Hybrids Prepared Using an Absorption-Transferring Process , 2008 .

[87]  G. Hilton,et al.  Optimization of microwire/glass-fibre reinforced polymer composites for wind turbine application , 2013 .

[88]  B. Dabrowski,et al.  Negative refraction in ferromagnet-superconductor superlattices. , 2005, Physical review letters.

[89]  K. Hatakeyama,et al.  Negative permeability spectra in Permalloy granular composite materials , 2006 .

[90]  Hua-Xin Peng,et al.  Relating residual stress and microstructure to mechanical and giant magneto-impedance properties in cold-drawn Co-based amorphous microwires , 2012 .

[91]  J. Baumberg,et al.  A 3D Optical Metamaterial Made by Self‐Assembly , 2012, Advanced materials.

[92]  I.D. Robertson,et al.  Capacitively-tuned split microstrip resonators for RFID barcodes , 2005, 2005 European Microwave Conference.

[93]  D. Rutter 2 – Theoretical Background , 1987 .

[94]  F. J. Rachford,et al.  Tunable negative index metamaterial using yttrium iron garnet , 2007 .

[95]  Zhiping Luo,et al.  Magnetoresistive polyaniline/multi-walled carbon nanotube nanocomposites with negative permittivity. , 2014, Nanoscale.

[96]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[97]  Hua-Xin Peng,et al.  Giant magnetoimpedance materials: Fundamentals and applications , 2008 .

[98]  S. Hollister Porous scaffold design for tissue engineering , 2005, Nature materials.

[99]  F. Scarpa,et al.  Hybridized magnetic microwire metacomposites towards microwave cloaking and barcoding applications , 2015, 1506.07745.

[100]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[101]  Chul Koo Kim,et al.  Reversed Doppler effect in double negative metamaterials , 2010 .

[102]  T. Cui,et al.  Three-dimensional broadband ground-plane cloak made of metamaterials , 2010, Nature communications.

[103]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[104]  J. Stewart Aitchison,et al.  Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies , 2006 .

[105]  Heinz Raether,et al.  BOOKS: Pattern Recognition in Practice: Proceedings, International Workshop, Amsterdam, 21-23 May 1980; Optical Fiber Systems and Their Components: An Introduction; Excitation of Plasmons and Interband Transitions by Electrons. , 1980, Applied optics.

[106]  Hongsheng Chen,et al.  Research Progress in Reversed Cherenkov Radiation in Double-Negative Metamaterials , 2009 .

[107]  Zhaoning Yu,et al.  Circuit fabrication at 17 nm half-pitch by nanoimprint lithography. , 2006, Nano letters.

[108]  E. Storms The Refractory carbides , 1967 .

[109]  V. Zhukova,et al.  Metacomposite characteristics and their influential factors of polymer composites containing orthogonal ferromagnetic microwire arrays , 2014, 1403.7630.

[110]  H. Lemke Substitutional Transition Metal Defects in Silicon Grown-In by the Float Zone Technique , 1995 .

[111]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[112]  Longwei Yin,et al.  Random Composites of Nickel Networks Supported by Porous Alumina Toward Double Negative Materials , 2012, Advanced materials.

[113]  N. Fang,et al.  Electrochemical nanoimprinting with solid-state superionic stamps. , 2007, Nano letters.

[114]  Zhanhu Guo,et al.  Conductive Polypyrrole/Tungsten Oxide Metacomposites with Negative Permittivity , 2010 .

[115]  Liangbin Hu,et al.  Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites , 2002 .

[116]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[117]  Xiaobo Yin,et al.  Experimental demonstration of an acoustic magnifying hyperlens. , 2009, Nature materials.

[118]  Sang‐Hyun Oh,et al.  Ultrasmooth Patterned Metals for Plasmonics and Metamaterials , 2009, Science.

[119]  V. Shalaev Optical negative-index metamaterials , 2007 .

[120]  C. Brosseau,et al.  Magnetic field and mechanical stress tunable microwave properties of composites containing Fe-based microwires , 2014 .

[121]  F. Scarpa,et al.  Microwires enabled metacomposites towards microwave applications , 2016 .

[122]  Xiao-Dong Wang,et al.  Fabrication and Characterization of Melt-Extracted Co-Based Amorphous Wires , 2011 .

[123]  C. Kittel On the Theory of Ferromagnetic Resonance Absorption , 1948 .

[124]  Y. Meng,et al.  Tunable negative permeability in an isotropic dielectric composite , 2008 .

[125]  M. Sorolla,et al.  Metamaterials with Negative Parameters , 2007 .

[126]  V. Boria,et al.  Experimental evidence of left handed transmission through arrays of ferromagnetic microwires , 2009 .

[127]  F. Cao,et al.  Fabrication and characterization of nano/amorphous dual-phase FINEMET microwires , 2013 .

[128]  A. Hoorfar,et al.  Space-filling curve RFID tags , 2006, 2006 IEEE Radio and Wireless Symposium.

[129]  Jiahua Zhu,et al.  Strain-Sensing Elastomer/Carbon Nanofiber “Metacomposites” , 2011 .