Some Invariants of Directed Topology towards a Theoretical Base for a Static Analyzer Dealing with Fine-Grain Concurrency

We define the geometric models of conservative programs. Those models belong to a class of objects, the isothetic regions, that is contained in most of the categories introduced as framework for directed topology. We describe some invariants of directed topology and prove that they are well-behaved for isothetic regions. In particular, the class of isothetic regions satisfy a unique decomposition property that is related to parallelization of programs.

[1]  Unique decomposition of processes , 1990, Bull. EATCS.

[2]  Vladimiro Sassone,et al.  Higher dimensional transition systems , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[3]  Jean Goubault-Larrecq Exponentiable Streams and Prestreams , 2014, Appl. Categorical Struct..

[4]  Cédric Fournet,et al.  JoCaml: A Language for Concurrent Distributed and Mobile Programming , 2002, Advanced Functional Programming.

[5]  N. D. Mestre,et al.  Factorization Unique and Otherwise , 2009 .

[6]  Gerald Beer,et al.  Topologies on Closed and Closed Convex Sets , 1993 .

[7]  J. Jardine Cubical homotopy theory: a beginning , 2002 .

[8]  Michel Raynal,et al.  Concurrent Programming: Algorithms, Principles, and Foundations , 2012, Springer Berlin Heidelberg.

[9]  Camillo De Lellis Rectifiable Sets, Densities and Tangent Measures , 2008 .

[10]  T. O’Neil Geometric Measure Theory , 2002 .

[11]  Ahmet A. Husainov Homology and Bisimulation of Asynchronous Transition Systems and Petri Nets , 2013, ArXiv.

[12]  J. Krivine,et al.  Algèbres de Processus Réversibles , 2006 .

[13]  P. J. Higgins,et al.  On the algebra of cubes , 1981 .

[14]  George W. Polites,et al.  An introduction to the theory of groups , 1968 .

[15]  Per Brinch Hansen,et al.  The Origin of Concurrent Programming: From Semaphores to Remote Procedure Calls , 2013 .

[16]  M. Raussen Simplicial models of trace spaces , 2010 .

[17]  Christos H. Papadimitriou,et al.  A Fast Algorithm for Testing for Safety and Detecting Deadlocks in Locked Transaction Systems , 1981, J. Algorithms.

[18]  Ulrich Fahrenberg,et al.  Directed Homology , 2004, CMCIM/GETCO@CONCUR.

[19]  The structure of tensor products of semilattices with zero , 1981 .

[20]  Frances E. Allen,et al.  Control-flow analysis , 2022 .

[21]  M. Raussen,et al.  RELATIVE DIRECTED HOMOTOPY THEORY OF PARTIALLY ORDERED SPACES , 2006 .

[22]  L. Evans Measure theory and fine properties of functions , 1992 .

[23]  Régis Cridlig,et al.  Implementing a Static Analyzer of Concurrent Programs: Problems and Perspectives , 1996, LOMAPS.

[24]  Peter Bubenik,et al.  Context for Models of Concurrency , 2006, GETCO@DISC.

[25]  Marco Grandis Directed homotopy theory, I. The fundamental category , 2001 .

[26]  P. Gaucher HOMOLOGICAL PROPERTIES OF NON-DETERMINISTIC BRANCHINGS AND MERGINGS IN HIGHER DIMENSIONAL AUTOMATA , 2003, math/0305169.

[27]  Eric Goubault,et al.  Homology of Higher Dimensional Automata , 1992, CONCUR.

[28]  Philip S. Hirschhorn Model categories and their localizations , 2003 .

[29]  Eric Goubault Domains of Higher-Dimensional Automata , 1993, CONCUR.

[30]  Pascal Lafourcade,et al.  On Unique Decomposition of Processes in the Applied π-Calculus , 2013, FoSSaCS.

[31]  Eric Goubault,et al.  A Practical Application of Geometric Semantics to Static Analysis of Concurrent Programs , 2005, CONCUR.

[32]  Martin Raußen Execution spaces for simple higher dimensional automata , 2012, Applicable Algebra in Engineering, Communication and Computing.

[33]  Oystein Ore,et al.  On the Foundation of Abstract Algebra. II , 1935 .

[34]  PETE L. CLARK,et al.  Factorization in Integral Domains I , 2009 .

[35]  Emmanuel Haucourt,et al.  Streams, d-Spaces and Their Fundamental Categories , 2012, GETCO.

[36]  Eric Goubault,et al.  Components of the Fundamental Category , 2004, Appl. Categorical Struct..

[37]  K. Ponto,et al.  More Concise Algebraic Topology: Localization, Completion, and Model Categories , 2012 .

[38]  John Milnor,et al.  THE GEOMETRIC REALIZATION OF A SEMI-SIMPLICIAL COMPLEX , 1957 .

[39]  Antoine Miné,et al.  Static analysis by abstract interpretation of concurrent programs. (Analyse statique par interprétation abstraite de programmes concurrents) , 2013 .

[40]  Edsger W. Dijkstra,et al.  Cooperating sequential processes , 2002 .

[41]  Rosa Antolini,et al.  Geometric Realisations of Cubical Sets with Connections, and Classifying Spaces of Categories , 2002, Appl. Categorical Struct..

[42]  Slawomir Lasota,et al.  Normed Processes, Unique Decomposition, and Complexity of Bisimulation Equivalences , 2009, INFINITY.

[43]  K. Mani Chandy,et al.  The drinking philosophers problem , 1984, ACM Trans. Program. Lang. Syst..

[44]  M. Grandis Directed Algebraic Topology: Models of Non-Reversible Worlds , 2009 .

[45]  Eric Goubault,et al.  Formal Relationships Between Geometrical and Classical Models for Concurrency , 2010, GETCO.

[46]  Brigitte Maier,et al.  Fundamentals Of Differential Geometry , 2016 .

[47]  M. Raussen Trace spaces in a pre-cubical complex , 2009 .

[48]  N. Steenrod,et al.  A convenient category of topological spaces. , 1967 .

[49]  K. Worytkiewicz Sheaves of ordered spaces and interval theories , 2008, 0808.1820.

[50]  Gérard Berry,et al.  The chemical abstract machine , 1989, POPL '90.

[51]  Jean Krivine,et al.  A Verification Technique for Reversible Process Algebra , 2012, RC.

[52]  S. B. Isaacson Symmetric Cubical Sets , 2009, 0910.4948.

[53]  The tensor product of distributive lattices: structural results , 1984 .

[54]  Sanjeevi Krishnan Cubical Approximation for Directed Topology I , 2015, Appl. Categorical Struct..

[55]  D. Gale Compact sets of functions and function rings , 1950 .

[56]  Peter Gabriel,et al.  Calculus of Fractions and Homotopy Theory , 1967 .

[57]  U. Fahrenberg,et al.  Reparametrizations of continuous paths , 2007, 0706.3560.

[58]  Eric Goubault,et al.  Components of the Fundamental Category II , 2007, Appl. Categorical Struct..

[59]  Daniele Varacca,et al.  A Compositional Semantics for the Reversible p-Calculus , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.

[60]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[61]  Philippe Gaucher,et al.  Combinatorics of labelling in higher-dimensional automata , 2008, Theor. Comput. Sci..

[62]  Roman Bruckner A Model Structure On The Category Of Small Acyclic Categories , 2015, 1508.00992.

[63]  Vaughan R. Pratt,et al.  Modeling concurrency with partial orders , 1986, International Journal of Parallel Programming.

[64]  W. Massey A basic course in algebraic topology , 1991 .

[65]  The semilattice tensor product of distributive lattices , 1976 .

[66]  Marc Pouzet,et al.  ReactiveML: a reactive extension to ML , 2005, PPDP.

[67]  Eric Goubault,et al.  Covering space theory for directed topology , 2008 .

[68]  Jiacun Wang,et al.  Handbook of Finite State Based Models and Applications , 2012 .

[69]  Robert W. Floyd,et al.  Assigning Meanings to Programs , 1993 .

[70]  D. M. Kan,et al.  ABSTRACT HOMOTOPY. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Paul F. Reynolds,et al.  The geometry of semaphore programs , 1987, TOPL.

[72]  P. Gabriel Unzerlegbare Darstellungen I , 1972 .

[73]  Martin Raußen Invariants of Directed Spaces , 2007, Appl. Categorical Struct..

[74]  John Milnor,et al.  A Unique Decomposition Theorem for 3-Manifolds , 1962 .

[75]  Dov M. Gabbay,et al.  Handbook of logic in computer science (vol. 4): semantic modelling , 1995 .

[76]  Gordon D. Plotkin,et al.  A structural approach to operational semantics , 2004, J. Log. Algebraic Methods Program..

[77]  C. McLarty EVERY GROTHENDIECK TOPOS HAS A ONE-WAY SITE , 2006 .

[78]  Hellmuth Kneser,et al.  Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten. , 1929 .

[79]  P. Gaucher A MODEL CATEGORY FOR THE HOMOTOPY THEORY OF CONCURRENCY , 2003, math/0308054.

[80]  Lisbeth Fajstrup,et al.  Dipaths and dihomotopies in a cubical complex , 2005, Adv. Appl. Math..

[81]  Edsger W. Dijkstra,et al.  Hierarchical ordering of sequential processes , 1971, Acta Informatica.

[82]  J. Nikiel,et al.  Continuous Images of Arcs and Inverse Limit Methods , 1993 .

[83]  Eric Goubault,et al.  Directed Algebraic Topology and Concurrency , 2016, Cambridge International Law Journal.

[84]  Emmanuel Haucourt,et al.  CATEGORIES OF COMPONENTS AND LOOP-FREE CATEGORIES , 2006 .

[85]  Georges de Rham,et al.  Sur la réductibilité d'un espace de Riemann , 1952 .

[86]  Walter Tholen,et al.  Categorical foundations : special topics in order, topology, algebra, and Sheaf theory , 2003 .

[87]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[88]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[89]  J. Rosický,et al.  A convenient category for directed homotopy. , 2007, 0708.3937.

[90]  A. Papadopoulos Metric Spaces, Convexity and Nonpositive Curvature , 2004 .

[91]  Pierre Antoine Grillet,et al.  The tensor product of commutative semigroups , 1969 .

[92]  Bas Luttik,et al.  Decomposition orders another generalisation of the fundamental theorem of arithmetic , 2004, Theor. Comput. Sci..

[93]  M. Grandis Directed combinatorial homology and noncommutative tori (The breaking of symmetries in algebraic topology) , 2005, Mathematical Proceedings of the Cambridge Philosophical Society.

[94]  David M. Bressoud Factorization and Primality Testing , 1989 .

[95]  Bas Luttik A Unique Decomposition Theorem for Ordered Monoids with Applications in Process Theory , 2003, MFCS.

[96]  R. Goldblatt Topoi, the Categorial Analysis of Logic , 1979 .

[97]  Kim C. Border,et al.  Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .

[98]  Michael W. Mislove,et al.  The Pontryagin Duality of Compact O-Dimensional Semilattices and Its Applications , 1974 .

[99]  Jean Goubault-Larrecq Non-Hausdorff Topology and Domain Theory - Selected Topics in Point-Set Topology , 2013, New Mathematical Monographs.

[100]  Tensor Product Semigroups , 2010 .

[101]  Junji Hashimoto On Direct Product Decomposition of Partially Ordered Sets , 1951 .

[102]  THE TENSOR PRODUCT OF DISTRIBUTIVE LATTICES II , 2007 .

[103]  Alfred Geroldinger,et al.  Non-Unique Factorizations : Algebraic, Combinatorial and Analytic Theory , 2006 .

[104]  G. Gratzer,et al.  Tensor products of semilattices with zero, revisited , 2000, math/0501436.

[105]  Jon P. May Simplicial objects in algebraic topology , 1993 .

[106]  Saturating directed spaces , 2012, 1212.1074.

[107]  Eric Goubault,et al.  Future Path-components in Directed Topology , 2010, MFPS.

[108]  Vaughan R. Pratt,et al.  Modeling concurrency with geometry , 1991, POPL '91.

[109]  R. Antolini Cubical structures, homotopy theory , 2000 .

[110]  Lynn Arthur Steen,et al.  Counterexamples in Topology , 1970 .

[112]  Y. Wong,et al.  Differentiable Manifolds , 2009 .

[113]  Eric Goubault,et al.  Semantics and Analysis of Linda-Based Languages , 1993, WSA.

[114]  J. R. Buzeman Introduction To Boolean Algebras , 1961 .

[115]  Eric Goubault,et al.  Rigorous Evidence of Freedom from Concurrency Faults in Industrial Control Software , 2011, SAFECOMP.

[116]  The De Rham Decomposition Theorem For Metric Spaces , 2006, math/0605419.

[117]  M. Brešar Introduction to Noncommutative Algebra , 2014 .

[118]  Eric Goubault,et al.  SOME GEOMETRIC PERSPECTIVES IN CONCURRENCY THEORY , 2003 .

[119]  L. Lewis The stable category and generalized Thom spectra , 1978 .

[120]  Michael Barr,et al.  GENERALIZED CONGRUENCES — EPIMORPHISMS IN Cat , 1999 .

[121]  Roberto M. Amadio,et al.  Domains and Lambda-Calculi (Cambridge Tracts in Theoretical Computer Science) , 2008 .

[122]  Denis-Charles Cisinski,et al.  Les Pr'efaisceaux comme mod`eles des types d''homotopie , 2002 .

[123]  S. Lane,et al.  Sheaves In Geometry And Logic , 1992 .

[124]  T. Porter CHAPTER 3 – Proper Homotopy Theory , 1995 .

[125]  D. Ravenel Complex Cobordism and Stable Homotopy Groups of Spheres , 1986 .

[126]  P. Gaucher DIRECTED ALGEBRAIC TOPOLOGY AND HIGHER DIMENSIONAL TRANSITION SYSTEMS , 2009, 0903.4276.

[127]  Thomas Kahl A Fibration Category of Local Pospaces , 2009, Electron. Notes Theor. Comput. Sci..

[128]  André Haefliger Extension of complexes of groups , 1992 .

[129]  Georges Maltsiniotis,et al.  La catégorie cubique avec connexions est une catégorie test stricte , 2009 .

[130]  Thibaut Balabonski,et al.  A Geometric Approach to the Problem of Unique Decomposition of Processes , 2010, CONCUR.

[131]  Eric Goubault,et al.  Geometry and concurrency: a user's guide , 2000, Mathematical Structures in Computer Science.

[132]  G. Naber,et al.  Elements of the Representation Theory of Associative Algebras Volume 1 Techniques of Representation Theory , 2017 .

[133]  Samuel Mimram,et al.  Presenting a Category Modulo a Rewriting System , 2015, RTA.

[134]  Eric Goubault,et al.  Algebraic topology and concurrency , 2006, Theor. Comput. Sci..

[135]  Cédric Fournet,et al.  The Join Calculus: A Language for Distributed Mobile Programming , 2000, APPSEM.

[136]  Achim Klenke,et al.  Probability theory - a comprehensive course , 2008, Universitext.

[137]  Axel Legay,et al.  Partial Higher-dimensional Automata , 2015, CALCO.

[138]  A. Douady,et al.  Algèbre et théories galoisiennes , 1979 .

[139]  Emmanuel Haucourt,et al.  The Boolean Algebra of Cubical Areas as a Tensor Product in the Category of Semilattices with Zero , 2014, ICE.

[140]  Vaughan R. Pratt,et al.  Higher dimensional automata revisited , 2000, Mathematical Structures in Computer Science.

[141]  T-homotopy and refinement of observation. III. Invariance of the branching and merging homologies , 2005, math/0505329.

[142]  F. Morgan Geometric Measure Theory: A Beginner's Guide , 1988 .

[143]  Reinhard Diestel,et al.  Graph-theoretical versus topological ends of graphs , 2003, J. Comb. Theory, Ser. B.

[144]  The tensor product of semilattices , 1978 .

[145]  Martin Raußen,et al.  On the classification of dipaths in geometric models for concurrency , 2000, Mathematical Structures in Computer Science.

[146]  Eric Goubault,et al.  Trace Spaces: An Efficient New Technique for State-Space Reduction , 2012, ESOP.