Birationally Rigid Complete Intersections with a Singular Point of High Multiplicity

Abstract We prove the birational rigidity of Fano complete intersections of index 1 with a singular point of high multiplicity, which can be close to the degree of the variety. In particular, the groups of birational and biregular automorphisms of these varieties are equal, and they are non-rational. The proof is based on the techniques of the method of maximal singularities, the generalized 4n2-inequality for complete intersection singularities and the technique of hypertangent divisors.

[1]  A. Pukhlikov The $$4n^2$$4n2-Inequality for Complete Intersection Singularities , 2016, 1607.02921.

[2]  A. Pukhlikov,et al.  Birationally rigid complete intersections of codimension two , 2016, 1604.00512.

[3]  Fumiaki Suzuki Birational rigidity of complete intersections , 2015, Mathematische Zeitschrift.

[4]  Takuzo Okada Birational Mori fiber structures of ℚ‐Fano 3‐fold weighted complete intersections , 2013, 1310.5320.

[5]  Ji-Heon Park,et al.  Birationally Rigid Fano Threefold Hypersurfaces , 2013, 1309.0903.

[6]  A. Pukhlikov Birationally Rigid Varieties , 2013 .

[7]  T. Eckl,et al.  On the locus of non-rigid hypersurfaces , 2012, 1210.3715.

[8]  T. Fernex Birational geometry of singular Fano hypersurfaces , 2012 .

[9]  T. Fernex Birational rigidity of singular Fano hypersurfaces , 2012, 1208.6073.

[10]  R. Mullany Fano double spaces with a big singular locus , 2010 .

[11]  C. Shramov Birational automorphisms of nodal quartic threefolds , 2008, 0803.4348.

[12]  M. Mella Birational geometry of quartic 3-folds II: The importance of being -factorial , 2004 .

[13]  A. Pukhlikov Birationally Rigid Singular Fano Hypersurfaces , 2003 .

[14]  A. Pukhlikov Birationally rigid Fano hypersurfaces with isolated singularities , 2001, math/0106110.

[15]  M. Mella,et al.  Birational geometry of terminal quartic 3-folds, I , 2001, math/0102096.

[16]  Aleksandr V. Pukhlikov,et al.  Birationally rigid Fano complete intersections , 2001 .

[17]  Miles Reid,et al.  Explicit Birational Geometry of 3-Folds: Fano 3-fold hypersurfaces , 2000 .

[18]  A. Pukhlikov BIRATIONAL AUTOMORPHISMS OF A THREE-DIMENSIONAL QUARTIC WITH A QUADRATIC SINGULARITY , 1989 .

[19]  Ju. Manin,et al.  THREE-DIMENSIONAL QUARTICS AND COUNTEREXAMPLES TO THE LÜROTH PROBLEM , 1971 .

[20]  A. Pukhlikov The 4 n 2-inequality for complete intersection singularities , 2022 .