Palladium‐Catalyzed Allylic Oxidation of Monoterpenic Alkenes with Molecular Oxygen

Palladium/p‐benzoquinone‐catalyzed aerobic oxidation of biomass‐based feedstock substrates, that is, limonene and α‐terpineol, has been developed. The system promotes an efficient dioxygen‐coupled catalytic turnover in the absence of auxiliary redox‐active co‐catalysts. Important for flavor and pharmaceutical industries, monoterpenic allylic acetates have been obtained in good to excellent yields. The regioselectivity of the limonene oxidation can be controlled through the appropriate choice of ligands and reaction conditions, which enables the variation of organoleptic properties of the product mixtures. The catalytic system can be applied generally to the allylic oxidation of simple cycloalkenes with molecular oxygen, for example, cyclohexene gives the corresponding allylic acetate in a nearly quantitative yield.

[1]  E. V. Gusevskaya,et al.  Solvent-free chromium catalyzed aerobic oxidation of biomass-based alkenes as a route to valuable fragrance compounds , 2011 .

[2]  E. V. Gusevskaya,et al.  Palladium-Catalyzed Aerobic Oxidation of Naturally Occurring Allylbenzenes as a Route to Valuable Fragrance and Pharmaceutical Compounds , 2010 .

[3]  E. N. Santos,et al.  Tandem hydroformylation-acetalization of para-menthenic terpenes under non-acidic conditions , 2010 .

[4]  K. Jitsukawa,et al.  Wacker-type oxidation of internal olefins using a PdCl2/N,N-dimethylacetamide catalyst system under copper-free reaction conditions. , 2009, Angewandte Chemie.

[5]  E. V. Gusevskaya,et al.  Palladium-Catalyzed Oxidation of Phenyl-Substituted Alkenes using Molecular Oxygen as the Sole Oxidant , 2009 .

[6]  Matthew S. Sigman,et al.  Recent advancements and challenges of palladium(II)-catalyzed oxidation reactions with molecular oxygen as the sole oxidant. , 2009, Chemical communications.

[7]  E. V. Gusevskaya,et al.  Aerobic Palladium(II)/Copper(II)-Catalyzed Oxidation of Olefins under Chloride-Free Nonacidic Conditions , 2009 .

[8]  E. V. Gusevskaya,et al.  Aromatization of para-menthenic terpenes by aerobic oxidative dehydrogenation catalyzed by p-benzoquinone , 2008 .

[9]  Julio Piera,et al.  Katalytische Oxidation von organischen Substraten durch molekularen Sauerstoff und Wasserstoffperoxid über einen mehrstufigen Elektronentransfer – ein biomimetischer Ansatz , 2008 .

[10]  J. Bäckvall,et al.  Catalytic oxidation of organic substrates by molecular oxygen and hydrogen peroxide by multistep electron transfer--a biomimetic approach. , 2008, Angewandte Chemie.

[11]  E. V. Gusevskaya,et al.  Cobalt- and manganese-substituted ferrites as efficient single-site heterogeneous catalysts for aerobic oxidation of monoterpenic alkenes under solvent-free conditions , 2008 .

[12]  E. V. Gusevskaya,et al.  Palladium-Catalyzed Oxidation of Monoterpenes: Novel Aerobic Pd(II)/Cu(II)-Catalyzed Oxidation of Linalool under Chloride-Free Nonacidic Conditions , 2007 .

[13]  J. Muzart Molecular oxygen to regenerate Pd(II) active species. , 2006, Chemistry, an Asian journal.

[14]  E. V. Gusevskaya,et al.  Palladium-catalyzed oxidation of monoterpenes: Highly selective syntheses of allylic ethers from limonene , 2006 .

[15]  K. Ebitani,et al.  Convenient and efficient Pd-catalyzed regioselective oxyfunctionalization of terminal olefins by using molecular oxygen as sole reoxidant. , 2006, Angewandte Chemie.

[16]  D. Piló‐Veloso,et al.  Palladium catalyzed oxidation of monoterpenes: NMR study of palladium(II)–monoterpene interactions , 2005 .

[17]  Shannon S. Stahl Palladiumoxidasekatalyse: selektive Oxidation durch direkte disauerstoffgekoppelte Umsetzung , 2004 .

[18]  Shannon S Stahl,et al.  Palladium oxidase catalysis: selective oxidation of organic chemicals by direct dioxygen-coupled turnover. , 2004, Angewandte Chemie.

[19]  E. V. Gusevskaya,et al.  Palladium catalyzed oxidation of monoterpenes: multistep electron transfer catalytic systems Pd(OAc)2/benzoquinone/M(OAc)2 (M=Cu, Co or Mn) for the allylic oxidation of limonene with dioxygen , 2004 .

[20]  K. Swift,et al.  Catalytic Transformations of the Major Terpene Feedstocks , 2004 .

[21]  C. Veloso,et al.  Catalytic Conversion of Terpenes into Fine Chemicals , 2004 .

[22]  Qiu-an Wang,et al.  A Convenient, Large Scale Synthesis of trans-(+)-Sobrerol , 2003 .

[23]  E. D’Elia,et al.  Wacker PdCl2–CuCl2 catalytic oxidation process: Oxidation of limonene , 2002 .

[24]  I. Kozhevnikov,et al.  Hydration and acetoxylation of monoterpenes catalyzed by heteropoly acid , 2001 .

[25]  A. Vavasori,et al.  Multistep electron transfer catalytic system for the oxidative carbonylation of phenol to diphenyl carbonate , 1999 .

[26]  E. V. Gusevskaya,et al.  Palladium-catalyzed oxidation of bicyclic monoterpenes by hydrogen peroxide , 1998 .

[27]  A. Mortreux,et al.  Selective palladium-catalysed functionalization of limonene: synthetic and mechanistic aspects , 1998 .

[28]  E. V. Gusevskaya,et al.  Palladium(II) catalyzed oxidation of naturally occurring terpenes with dioxygen , 1997 .

[29]  S. Sakaguchi,et al.  Molybdovanadophosphate (NPMoV)/hydroquinone/O2 system as an efficient reoxidation system in palladium-catalyzed oxidation of alkenes , 1996 .

[30]  J. Bäckvall,et al.  Aerobic palladium-heteropolyacid-catalyzed allylic acetoxylation of cyclohexene , 1996 .

[31]  J. Bäckvall,et al.  Acid‑Induced Transformation of Palladium(0)­‑Benzoquinone Complexes to Palladium(II) and Hydroquinone , 1993 .

[32]  L. Firdoussi Actoxylation et mthoxylation d'olfines terpniques catalyses par le palladium(II) , 1992 .

[33]  S. Bystroem,et al.  Palladium-catalyzed allylic oxidation of cyclohexenes using molecular oxygen as oxidant , 1990 .

[34]  H. Grennberg,et al.  Multistep electron transfer in palladium-catalyzed aerobic oxidations via a metal macrocycle-quinone system , 1990 .

[35]  A. Stepanov,et al.  Study of the mechanism of ethylene oxidation by palladium(II) complexes containing nitro and/or nitrato ligands in chloroform , 1989 .

[36]  J. Bäckvall,et al.  Multi-step catalysis for the oxidation of oleftns to ketones by molecular oxygen in chloride free media , 1988 .

[37]  J. Bäckvall,et al.  Evidence for (π-allyl)palladium(II)(quinone) complexes in the palladium-catalyzed 1,4-diacetoxylation of conjugated dienes , 1988 .

[38]  J. Baeckvall,et al.  Biomimetic aerobic 1,4-oxidation of 1,3-dienes catalyzed by cobalt tetraphenylporphyrin-hydroquinone-palladium(II). An example of triple catalysis , 1987 .

[39]  Y. Chow,et al.  Role of the acetylacetonyl radical in the sensitized photoreduction of bis(acetylacetonato)copper(II) , 1986 .

[40]  B. Waegell,et al.  Oxidation with Palladium Salts: Stereo‐ and Regiospecific Acetoxylation of 4‐Vinylcyclohexene Derivatives , 1982 .

[41]  Marius Réglier,et al.  Oxidation mit Palladiumsalzen: Stereo- und regiospezifische Acetoxylierung von 4-Vinylcyclohexen-Derivaten† , 1982 .

[42]  T. J. Dietsche,et al.  Allylic alkylation: preparation of .pi.-allylpalladium complexes from olefins , 1978 .

[43]  J. Smidt,et al.  Katalytische Umsetzungen von Olefinen an Platinmetall‐Verbindungen Das Consortium‐Verfahren zur Herstellung von Acetaldehyd , 1959 .