Frequency and amplitude discrimination along the kinestheticcutaneous continuum in the presence of masking stimuli.

Frequency and amplitude discrimination thresholds along the kinesthetic to cutaneous continuum were evaluated on the left index fingerpad using a multifinger tactual display. Target stimuli were presented either in isolation (no-masker condition) or in the presence of masking stimuli (one- or two-masker conditions). Six reference target signals in the frequency range 2-300 Hz (two each from low-, medium-, and high-frequency regions) and at an amplitude of either 20 or 35 dB sensation levels (SL) were used. In the no-masker condition, the range of frequency Weber fraction was 0.13-0.38 and 0.14-0.28, and the range of amplitude discrimination threshold was 1.82-2.98 dB and 1.65-2.71 dB, at 20 and 35 dB SL, respectively. In the masking conditions, average frequency Weber fractions rose to 0.60 and 0.46, and average amplitude thresholds rose to 3.63 and 3.72 dB, at 20 and 35 dB SL, respectively. In general, thresholds were largest in the two-masker condition and lowest in the no-masker condition. Although the frequency and amplitude thresholds generally increased in the presence of masking stimuli, there was some indication of channel independence for low- and high-frequency target stimuli. The implications of the results for tactual communication of speech are discussed.

[1]  Vern O. Knudsen,et al.  “Hearing” with the Sense of Touch , 1928 .

[2]  F. A. Geldard Adventures in tactile literacy. , 1957 .

[3]  G. D. Goff Differential discrimination of frequency of cutaneous mechanical vibration. , 1967, Journal of experimental psychology.

[4]  W A Ainsworth,et al.  First formant transitions and the perception of synthetic semivowels. , 1968, The Journal of the Acoustical Society of America.

[5]  H. Levitt Transformed up-down methods in psychoacoustics. , 1971, The Journal of the Acoustical Society of America.

[6]  D. J. Sharf,et al.  Identification of Place of Consonant Articulation from Vowel Formant Transitions , 1972 .

[7]  J. Craig Difference threshold for intensity of tactile stimuli , 1972 .

[8]  K. Stevens,et al.  Role of formant transitions in the voiced-voiceless distinction for stops. , 1974, The Journal of the Acoustical Society of America.

[9]  James C. Craig,et al.  Vibrotactile difference thresholds for intensity and the effect of a masking stimulus , 1974 .

[10]  Ove Franzén,et al.  Vibrotactile frequency discrimination , 1975 .

[11]  V. Mountcastle,et al.  Capacities of humans and monkeys to discriminate vibratory stimuli of different frequency and amplitude: a correlation between neural events and psychological measurements. , 1975, Journal of neurophysiology.

[12]  S J Bolanowski,et al.  Vibrotactile frequency for encoding a speech parameter. , 1977, The Journal of the Acoustical Society of America.

[13]  Roger Ratcliff,et al.  A revised table of d’ for M-alternative forced choice , 1979 .

[14]  Donald Fucci,et al.  Intensity difference limens for lingual vibrotactile stimuli , 1982 .

[15]  G A Gescheider,et al.  Prediction of vibrotactile masking functions. , 1982, The Journal of the Acoustical Society of America.

[16]  N I Durlach,et al.  Tactile communication of speech: II. Comparison of two spectral displays in a vowel discrimination task. , 1982, The Journal of the Acoustical Society of America.

[17]  C M Reed,et al.  Research on the Tadoma method of speech communication. , 1983, The Journal of the Acoustical Society of America.

[18]  S. Bolanowski,et al.  Four channels mediate the mechanical aspects of touch. , 1988, The Journal of the Acoustical Society of America.

[19]  N I Durlach,et al.  Tactile communication of speech: comparison of two computer-based displays. , 1988, Journal of rehabilitation research and development.

[20]  T Hnath-Chisolm,et al.  Perception of Frequency Contours via Temporal and Spatial Tactile Transforms , 1988, Ear and hearing.

[21]  S. Bolanowski,et al.  Vibrotactile intensity discrimination measured by three methods. , 1990, The Journal of the Acoustical Society of America.

[22]  B L Whitsel,et al.  Time course and action spectrum of vibrotactile adaptation. , 1990, Somatosensory & motor research.

[23]  Method for the location of burst-onset spectra in the auditory-perceptual space: a study of place of articulation in voiceless stop consonants. , 1991, The Journal of the Acoustical Society of America.

[24]  M E Demorest,et al.  Lipreading sentences with vibrotactile vocoders: performance of normal-hearing and hearing-impaired subjects. , 1991, The Journal of the Acoustical Society of America.

[25]  K. Horch,et al.  Coding of vibrotactile stimulus frequency by Pacinian corpuscle afferents. , 1991, The Journal of the Acoustical Society of America.

[26]  J M Weisenberger,et al.  Evaluation of a principal-components tactile aid for the hearing-impaired. , 1991, The Journal of the Acoustical Society of America.

[27]  M. Hollins,et al.  Vibrotactile adaptation enhances amplitude discrimination. , 1993, The Journal of the Acoustical Society of America.

[28]  A E Carney,et al.  A comparison of speech discrimination with cochlear implants and tactile aids. , 1993, The Journal of the Acoustical Society of America.

[29]  M. Hollins,et al.  Vibrotactile adaptation enhances frequency discrimination. , 1994, The Journal of the Acoustical Society of America.

[30]  J M Weisenberger,et al.  The Transmission of Phoneme‐Level Information by Multichannel Tactile Speech Perception Aids , 1995, Ear and hearing.

[31]  Hong Z. Tan,et al.  A New Mult-Finger Tactual Display , 1996, Dynamic Systems and Control.

[32]  G A Gescheider,et al.  Effects of stimulus duration on the amplitude difference limen for vibrotaction. , 1996, The Journal of the Acoustical Society of America.

[33]  B H Brown,et al.  Information from time-varying vibrotactile stimuli. , 1997, The Journal of the Acoustical Society of America.

[34]  J. Craig,et al.  Amplitude and period discrimination of haptic stimuli. , 1998, The Journal of the Acoustical Society of America.

[35]  Nathaniel I. Durlach,et al.  Note on Information Transfer Rates in Human Communication , 1998, Presence.

[36]  W. M. Rabinowitz,et al.  Information transmission with a multifinger tactual display , 1999, Perception & psychophysics.

[37]  S S Hsiao,et al.  Detection of vibration transmitted through an object grasped in the hand. , 1999, Journal of neurophysiology.

[38]  A. Jongman,et al.  Acoustic characteristics of English fricatives. , 2000, The Journal of the Acoustical Society of America.

[39]  S J Bensmaïa,et al.  Complex tactile waveform discrimination. , 2000, The Journal of the Acoustical Society of America.

[40]  Jan Van der Spiegel,et al.  Acoustic-phonetic features for the automatic classification of stop consonants , 2001, IEEE Trans. Speech Audio Process..

[41]  M. Leek Adaptive procedures in psychophysical research , 2001, Perception & psychophysics.

[42]  A M Ali,et al.  Acoustic-phonetic features for the automatic classification of fricatives. , 2001, The Journal of the Acoustical Society of America.

[43]  S. Bolanowski,et al.  A four-channel analysis of the tactile sensitivity of the fingertip: frequency selectivity, spatial summation, and temporal summation , 2002, Somatosensory & motor research.

[44]  Charlotte M Reed,et al.  Temporal masking of multidimensional tactual stimuli. , 2003, The Journal of the Acoustical Society of America.

[45]  S. J. Bolanowski,et al.  Some characteristics of tactile channels , 2004, Behavioural Brain Research.

[46]  Hong Z. Tan,et al.  A Two DOF Controller for a Multi-Finger Tactual Display Using a Loop-Shaping Technique , 2004 .

[47]  Hanfeng Yuan,et al.  Temporal onset-order discrimination through the tactual sense. , 2005, The Journal of the Acoustical Society of America.

[48]  M. Hollins,et al.  Vibrotactile intensity and frequency information in the Pacinian system: A psychophysical model , 2005, Perception & psychophysics.

[49]  Hanfeng Yuan,et al.  Tactual display of consonant voicing to supplement lipreading , 2005, The Journal of the Acoustical Society of America.

[50]  John C Stevens,et al.  Tactile information transfer: a comparison of two stimulation sites. , 2005, The Journal of the Acoustical Society of America.