A Bayesian approach to edge detection in noisy images

An adaptive method for edge detection in monochromatic unblurred noisy images is proposed. It is based on a linear stochastic signal model derived from a physical image description. The presence of an edge is modeled as a sharp local variation of the gray-level mean value. In any pixel, the statistical model parameters are estimated by means of a Bayesian procedure. Then an hypothesis test, based on the likelihood ratio statistics, is adopted to mark a pixel as an edge point. This technique exploits the estimated local signal characteristics and does not require any overall thresholding procedure.

[1]  N. Ishii,et al.  Computer classification of the EEG time series by Kullback information measure , 1980 .

[2]  David N. Kennedy,et al.  Application of the boundary contour/feature contour system to magnetic resonance brain scan imagery , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[3]  S. Rajala,et al.  Adaptive nonlinear image restoration by a modified Kalman filtering approach , 1981 .

[4]  Owen Robert Mitchell,et al.  Edge Location to Subpixel Values in Digital Imagery , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Michael Brady,et al.  The Curvature Primal Sketch , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  A. Benveniste,et al.  Desgin and comparative study of some sequential jump detection algorithms for digital signals , 1983 .

[8]  William A. Sethares,et al.  Smoothing of discontinuous signals: the competitive approach , 1995, IEEE Trans. Signal Process..

[9]  Thomas O. Binford,et al.  Inferring Surfaces from Images , 1981, Artif. Intell..

[10]  A. V. Balakrishnan,et al.  Kalman Filtering Theory , 1984 .

[11]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[12]  A. Murat Tekalp,et al.  Edge-adaptive Kalman filtering for image restoration with ringing suppression , 1989, IEEE Trans. Acoust. Speech Signal Process..

[13]  John W. Woods,et al.  Image Estimation Using Doubly Stochastic Gaussian Random Field Models , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Josef Kittler,et al.  Hypothesis Testing: A Framework for Analyzing and Optimizing Hough Transform Performance , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[16]  R. Wilson,et al.  Anisotropic Nonstationary Image Estimation and Its Applications: Part I - Restoration of Noisy Images , 1983, IEEE Transactions on Communications.

[17]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  S. Grossberg,et al.  A neural network architecture for preattentive vision , 1989, IEEE Transactions on Biomedical Engineering.

[19]  I. Tamanini,et al.  Regularity properties of optimal segmentations. , 1991 .

[20]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[21]  Hermann Rohling,et al.  Radar CFAR Thresholding in Clutter and Multiple Target Situations , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[22]  Leonard M. Silverman,et al.  Nonlinear Restoration of Noisy Images , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  R. Gray,et al.  Distortion measures for speech processing , 1980 .

[24]  Robert M. Haralick,et al.  Digital Step Edges from Zero Crossing of Second Directional Derivatives , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  S. Haykin,et al.  Ordered Statistic CFAR Processing for Two-Parameter Distributions with Variable Skewness , 1985, IEEE Transactions on Aerospace and Electronic Systems.

[26]  Wolfram H. H. J. Lunscher,et al.  Optimal Edge Detector Design II: Coefficient Quantization , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Alfredo Germani,et al.  Space-variant recursive restoration of noisy images , 1994 .

[28]  A. Jain,et al.  Partial differential equations and finite-difference methods in image processing, part 1: Image representation , 1977 .

[29]  Werner Frei,et al.  Fast Boundary Detection: A Generalization and a New Algorithm , 1977, IEEE Transactions on Computers.

[30]  W. Lunscher,et al.  Optimal Edge Detector Design I: Parameter Selection and Noise Effects , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Theodosios Pavlidis,et al.  Bar Code Waveform Recognition Using Peak Locations , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Jitendra K. Tugnait,et al.  Linear model validation and order selection using higher order statistics , 1994, IEEE Trans. Signal Process..

[33]  Ennio Mingolla,et al.  Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentations , 1985 .

[34]  Manfred H. Hueckel An Operator Which Locates Edges in Digitized Pictures , 1971, J. ACM.

[35]  L. Grippo,et al.  A truncated Newton method with nonmonotone line search for unconstrained optimization , 1989 .

[36]  Gérard G. Medioni,et al.  Detection of Intensity Changes with Subpixel Accuracy Using Laplacian-Gaussian Masks , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  S. Mallat,et al.  Second generation compact image coding with wavelets , 1993 .

[38]  P. H. Gregson,et al.  Using Angular Dispersion of Gradient Direction for Detecting Edge Ribbons , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  L. Jetto,et al.  Image modeling and restoration: A new approach , 1989 .

[40]  Thomas O. Binford,et al.  On Detecting Edges , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Tomaso A. Poggio,et al.  On Edge Detection , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.