Titanium dioxide for solar-hydrogen I. Functional properties

Abstract The present work considers the concept of photoelectrochemical generation of hydrogen through water splitting using solar energy (solar-hydrogen). The focus is on functional material properties that are essential for the performance of photoelectrochemical cell for solar-hydrogen. The performance of the cell is discussed in terms of the energy conversion efficiency (ECE). It is argued that TiO 2 and TiO 2 -based materials are the most promising candidates for photoelectrodes for solar-hydrogen. The modification of TiO 2 in order to achieve desired performance parameters is discussed in terms of the electronic structure, concentration of charge carriers and segregation-induced surface properties, which are critical to the ECE. Challenges to the development of a bi-photoelectrode cell, equipped with both n-type and p-type TiO 2 , forming photoanode and photocathode, respectively, are discussed. The research strategies and pressing issues related to the optimization of key functional properties necessary for the commercialization of solar-hydrogen are outlined. It is shown that defect chemistry is the most appropriate framework for tailoring the functional properties of TiO 2 -based oxide systems in order to obtain high-performance photoelectrodes. The present work provides an overview of the research progress on solar-hydrogen.

[1]  J. Nowotny,et al.  Solar-hydrogen: Environmentally safe fuel for the future , 2005 .

[2]  H. Oeschger,et al.  Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries , 1985, Nature.

[3]  J. Nowotny,et al.  Defect chemistry and semiconducting properties of titanium dioxide: II. Defect diagrams☆ , 2003 .

[4]  E. Walsh,et al.  Improved solar energy conversion efficiencies for the photocatalytic production of hydrogen via TiO2 semiconductor electrodes , 1976 .

[5]  F. Perdu,et al.  Point defects and charge transport in pure and chromium-doped rutile at 1273 K , 1989 .

[6]  P. Reiche A survey of weathering processes and products , 1950 .

[7]  Brian D. James,et al.  Market penetration scenarios for fuel cell vehicles , 1998 .

[8]  Akira Fujishima,et al.  Titanium dioxide photocatalysis , 2000 .

[9]  Stuart Licht,et al.  Efficient Solar Water Splitting, Exemplified by RuO2-Catalyzed AlGaAs/Si Photoelectrolysis , 2000 .

[10]  J. Nowotny,et al.  Photo-electrochemical properties of the TiO2-Pt system in aqueous solutions , 2002 .

[11]  M. E. Zayat,et al.  Photoelectrochemical properties of dye sensitized Zr-doped SrTiO3 electrodes , 1998 .

[12]  John O’M. Bockris,et al.  Surface Electrochemistry: A Molecular Level Approach , 1993 .

[13]  Charles C. Sorrell,et al.  Materials for energy conversion devices , 2005 .

[14]  N. Serpone,et al.  Photocatalysis: Fundamentals and Applications , 1989 .

[15]  J. Nowotny Interface defect chemistry and its impact on properties of oxide ceramic materials , 1991 .

[16]  M. Graetzel Nanocrystalline ceramic films for efficient conversion of light into electricity , 1994 .

[17]  M. Okuda,et al.  Photoeffects on Semiconductor Ceramics Electrodes , 1976 .

[18]  B. Seraphin Solar Energy Conversion , 1979 .

[19]  J. G. Mavroides,et al.  Photoelectrolysis of water in cells with SrTiO3 anodes , 1976 .

[20]  J. Houlihan,et al.  Improved solar efficiencies for doped polycrystalline TiO2 photoanodes , 1979 .

[21]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[22]  Akira Fujishima,et al.  Photoelectrochemical Reactions at SrTiO3 Single Crystal Electrode , 1976 .

[23]  J. Bockris,et al.  Interfacial electron transfer as a significant step in photoelectrochemical reactions on some semiconductors , 1981 .

[24]  Ashutosh Kumar Singh,et al.  Investigation and optimization of nanostructured TiO2 photoelectrode in regard to hydrogen production through photoelectrochemical process , 2003 .

[25]  Arthur J. Nozik,et al.  p‐n photoelectrolysis cells , 1976 .

[26]  J. Augustynski,et al.  Behavior of surface peroxo species in the photoreactions at titanium dioxide , 1986 .

[27]  J. F. Houlihan,et al.  Doped polycrystalline TiO2 electrodes for the photo-assisted electrolysis of water , 1978 .

[28]  H. Gerischer,et al.  ELECTROCHEMICAL TECHNIQUES FOR THE STUDY OF PHOTOSENSITIZATION * , 1972 .

[29]  Xenophon E. Verykios,et al.  Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage , 1993 .

[30]  M. Grätzel,et al.  Separation of linkage isomers of trithiocyanato (4,4′,4″-tricarboxy-2,2′,6,2″-terpyridine)ruthenium(II) by pH-titration method and their application in nanocrystalline TiO2-based solar cells , 2001 .

[31]  David L. Morse,et al.  Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential , 1976 .

[32]  J. Nowotny,et al.  Effect of segregation on near-surface and bulk transport phenomena in ionic crystals , 1986 .

[33]  Akira Fujishima,et al.  Hydrogen Production under Sunlight with an Electrochemical Photocell , 1975 .

[34]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[35]  Linda Wang Paving Out Pollution. , 2002 .

[36]  A. Bard,et al.  Semiconductor Electrodes VI . A Photoelectrochemical Solar Cell Employing a Anode and Oxygen Cathode , 1976 .

[37]  Shahed U. M. Khan Materials for photoelectrochemical devices , 2005 .

[38]  Makoto Egashira,et al.  Hydrogen-sensing properties of anodically oxidized TiO2 film sensors: Effects of preparation and pretreatment conditions , 2005 .

[39]  K. Yoon,et al.  Photoeffects in undoped and doped SrTiO3 ceramic electrodes , 1987 .

[40]  G. L. Sharma,et al.  Mechanism of highly sensitive and fast response Cr doped TiO2 oxygen gas sensor , 1997 .

[41]  Peng Wang,et al.  Ambient temperature plastic crystal electrolyte for efficient, all-solid-state dye-sensitized solar cell. , 2004, Journal of the American Chemical Society.

[42]  P. Tasker,et al.  A CALCULATION OF THE FORMATION ENERGIES OF INTRINSIC DEFECTS NEAR GRAIN-BOUNDARIES IN NIO , 1985 .

[43]  Turner,et al.  A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.

[44]  Shahed U. M. Khan,et al.  Photoresponse and AC impedance characterization of n-TiO2 films during hydrogen and oxygen evolution reactions in an electrochemical cell , 1997 .

[45]  M. Rȩkas,et al.  Defect chemistry and semiconducting properties of titanium dioxide: III. Mobility of electronic charge carriers☆ , 2003 .

[46]  J. Nowotny,et al.  Titanium dioxide for solar-hydrogen III: Kinetic effects at elevated temperatures , 2007 .

[47]  Hironori Arakawa,et al.  Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst , 2001, Nature.

[48]  J. Loferski Chapter 4 – Materials for Solar Energy Conversion , 1979 .

[49]  Akira Fujishima,et al.  Formation of Hydrogen Gas with an Electrochemical Photo-cell , 1975 .

[50]  Kazuhiko Yazawa,et al.  Photoelectrolysis of water with TiO2‐covered solar‐cell electrodes , 1976 .

[51]  M. Rȩkas,et al.  Defect chemistry and semiconducting properties of titanium dioxide: I. Intrinsic electronic equilibrium , 2003 .

[52]  M. Umeno,et al.  Optical properties and X-ray photoelectron spectroscopic study of pure and Pb-doped TiO2 thin films , 1999 .

[53]  R. A. Osteryoung,et al.  Thermodynamic and Photoelectrochemical Behavior of the n ‐ TiO2 Electrode in Fluoride‐Containing Solutions , 1982 .

[54]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[55]  J. Carey,et al.  Intensity effects in the electrochemical photolysis of water at the TiO2 electrode , 1976, Nature.

[56]  Hans Dieter Breuer,et al.  The influence of transition metal doping on the physical and photocatalytic properties of titania , 1999 .

[57]  C. Stalder,et al.  Photoassisted Oxidation of Water at Beryllium‐Doped Polycrystalline TiO2 Electrodes , 1979 .

[58]  Hideo Tamura,et al.  A Photo-electochemical cell with production of hydrogen and oxygen by a cell reaction , 1975 .

[59]  J. Weiner,et al.  Fundamentals and applications , 2003 .

[60]  O. Srivastava,et al.  Structural and photoelectrochemical studies of In2O3-TiO2 and WSe2 photoelectrodes for photoelectrochemical production of hydrogen , 1989 .

[61]  A. Nozik,et al.  Photoelectrolysis of water using semiconducting TiO2 crystals , 1975, Nature.

[62]  H. Friedli,et al.  Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries , 1986, Nature.

[63]  D. I. Tchernev,et al.  Photoelectrolysis of water in cells with TiO2 anodes , 1975 .

[64]  Amal K. Ghosh,et al.  Photoelectrolysis of water in sunlight with sensitized semiconductor electrodes , 1977 .