A review on electrospinning design and nanofibre assemblies

Although there are many methods of fabricating nanofibres, electrospinning is perhaps the most versatile process. Materials such as polymer, composites, ceramic and metal nanofibres have been fabricated using electrospinning directly or through post-spinning processes. However, what makes electrospinning different from other nanofibre fabrication processes is its ability to form various fibre assemblies. This will certainly enhance the performance of products made from nanofibres and allow application specific modifications. It is therefore vital for us to understand the various parameters and processes that allow us to fabricate the desired fibre assemblies. Fibre assemblies that can be fabricated include nonwoven fibre mesh, aligned fibre mesh, patterned fibre mesh, random three-dimensional structures and sub-micron spring and convoluted fibres. Nevertheless, more studies are required to understand and precisely control the actual mechanics in the formation of various electrospun fibrous assemblies.

[1]  Gary Tepper,et al.  Electrospun polymer composite fiber arrays for the detection and identification of volatile organic compounds , 2006 .

[2]  GeunHyung Kim,et al.  Stability analysis for multi-jets electrospinning process modified with a cylindrical electrode , 2006 .

[3]  Electrospinning process using field‐controllable electrodes , 2006 .

[4]  Liwei Lin,et al.  Near-field electrospinning. , 2006, Nano letters.

[5]  Anthony Atala,et al.  Controlled fabrication of a biological vascular substitute. , 2006, Biomaterials.

[6]  D. Reneker,et al.  Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface , 2006, Nanotechnology.

[7]  Static secondary ion mass spectrometry for nanoscale analysis: surface characterisation of electrospun nanofibres. , 2006, Rapid communications in mass spectrometry : RCM.

[8]  Martin Möller,et al.  Direct in vitro electrospinning with polymer melts. , 2006, Biomacromolecules.

[9]  Jianjun Guan,et al.  Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. , 2006, Biomaterials.

[10]  A A Poot,et al.  Electrospinning of collagen and elastin for tissue engineering applications. , 2006, Biomaterials.

[11]  Jun Kameoka,et al.  Electrospinning of silica nanochannels for single molecule detection , 2006 .

[12]  D. Kaplan,et al.  Production of Submicron Diameter Silk Fibers under Benign Processing Conditions by Two-Fluid Electrospinning , 2006 .

[13]  W. Park,et al.  Direct electrospinning of ultrafine titania fibres in the absence of polymer additives and formation of pure anatase titania fibres at low temperature , 2006 .

[14]  Christian H. Reccius,et al.  Single electrospun regioregular poly(3-hexylthiophene) nanofiber field-effect transistor , 2005 .

[15]  S. Ramakrishna,et al.  Nanofibres and their Influence on Cells for Tissue Regeneration , 2005 .

[16]  Hongxia Wang,et al.  Self‐Crimping Bicomponent Nanofibers Electrospun from Polyacrylonitrile and Elastomeric Polyurethane , 2005 .

[17]  Miqin Zhang,et al.  Electrospun chitosan-based nanofibers and their cellular compatibility. , 2005, Biomaterials.

[18]  P. Supaphol,et al.  Ultrafine Electrospun Polyamide‐6 Fibers: Effects of Solvent System and Emitting Electrode Polarity on Morphology and Average Fiber Diameter , 2005 .

[19]  F P T Baaijens,et al.  Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. , 2005, Acta biomaterialia.

[20]  Ioannis S. Chronakis,et al.  Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—A review , 2005 .

[21]  N. Pinto,et al.  Electrospun poly(3-hexylthiophene-2,5-diyl) fiber field effect transistor , 2005 .

[22]  M. Kotaki,et al.  Systematic parameter study for ultra-fine fiber fabrication via electrospinning process , 2005 .

[23]  Seeram Ramakrishna,et al.  Electrospun fibre bundle made of aligned nanofibres over two fixed points , 2005 .

[24]  D. Fang,et al.  Formation of water-resistant hyaluronic acid nanofibers by blowing-assisted electro-spinning and non-toxic post treatments , 2005 .

[25]  T. Lim,et al.  An Introduction to Electrospinning and Nanofibers , 2005 .

[26]  Seeram Ramakrishna,et al.  Porous tubular structures with controlled fibre orientation using a modified electrospinning method , 2005 .

[27]  Kam W Leong,et al.  Sustained release of proteins from electrospun biodegradable fibers. , 2005, Biomacromolecules.

[28]  Gary E. Wnek,et al.  Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer-polymer interaction limit , 2005 .

[29]  R. W. Tock,et al.  Electrospinning of nanofibers , 2005 .

[30]  Ehud Kroll,et al.  MULTIPLE JETS IN ELECTROSPINNING: EXPERIMENT AND MODELING , 2005 .

[31]  T. Matsuda,et al.  Mechano-active scaffold design of small-diameter artificial graft made of electrospun segmented polyurethane fabrics. , 2005, Journal of biomedical materials research. Part A.

[32]  Ulrich Buttner,et al.  Continuous yarns from electrospun fibers , 2005 .

[33]  Manit Nithitanakul,et al.  Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers , 2005 .

[34]  J. Sanders,et al.  Fibro-porous meshes made from polyurethane micro-fibers: effects of surface charge on tissue response. , 2005, Biomaterials.

[35]  Martin Möller,et al.  Electrospinning with dual collection rings , 2005 .

[36]  Myung-Seob Khil,et al.  Novel fabricated matrix via electrospinning for tissue engineering. , 2005, Journal of biomedical materials research. Part B, Applied biomaterials.

[37]  M. Kotaki,et al.  Structure and properties of electrospun PLLA single nanofibres , 2005, Nanotechnology.

[38]  A. Subramanian,et al.  Preparation and evaluation of the electrospun chitosan/PEO fibers for potential applications in cartilage tissue engineering , 2005, Journal of biomaterials science. Polymer edition.

[39]  Takehisa Matsuda,et al.  Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. , 2005, Biomaterials.

[40]  Slawomir Blonski,et al.  Experiments and modelling of electrospinning process , 2005 .

[41]  P. Gibson,et al.  Cooperative Charging Effects of Fibers from Electrospinning of Electrically Dissimilar Polymers , 2004 .

[42]  Manit Nithitanakul,et al.  Ultrafine Electrospun Polyamide‐6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter , 2004 .

[43]  P. Supaphol,et al.  Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene , 2004 .

[44]  Frank Ko,et al.  Melt-electrospinning. part I: processing parameters and geometric properties , 2004 .

[45]  George G. Chase,et al.  Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire Drum Collector , 2004 .

[46]  William R Wagner,et al.  Fabrication of biodegradable elastomeric scaffolds with sub-micron morphologies. , 2004, Journal of biomedical materials research. Part A.

[47]  W. Park,et al.  Formation of nanostructured poly(lactic-co-glycolic acid)/chitin matrix and its cellular response to normal human keratinocytes and fibroblasts , 2004 .

[48]  Seeram Ramakrishna,et al.  Preparation of Core−Shell Structured PCL-r-Gelatin Bi-Component Nanofibers by Coaxial Electrospinning , 2004 .

[49]  C. Sung,et al.  Nanocharacterization of Electrospun Nanofibers of Polyaniline/Poly Methyl Methacrylate Blends Using SEM, TEM and AFM , 2004, Microscopy and Microanalysis.

[50]  M. Khil,et al.  The effect of molecular weight and the linear velocity of drum surface on the properties of electrospun poly(ethylene terephthalate) nonwovens , 2004 .

[51]  P. Gibson,et al.  Patterned Electrospray Fiber Structures , 2004 .

[52]  Akio Okamoto,et al.  Electro-spinning and electro-blowing of hyaluronic acid. , 2004, Biomacromolecules.

[53]  M. Márquez,et al.  Electrically forced coaxial nanojets for one-step hollow nanofiber design. , 2004, Journal of the American Chemical Society.

[54]  Eyal Zussman,et al.  Upward needleless electrospinning of multiple nanofibers , 2004 .

[55]  R. Kessick,et al.  The use of AC potentials in electrospraying and electrospinning processes , 2004 .

[56]  Younan Xia,et al.  Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning , 2004 .

[57]  Tomokazu Sato,et al.  Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning , 2004 .

[58]  Eyal Zussman,et al.  Experimental investigation of the governing parameters in the electrospinning of polymer solutions , 2004 .

[59]  Jun Kameoka,et al.  Polymeric Nanowire Chemical Sensor , 2004 .

[60]  Younan Xia,et al.  Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer‐by‐Layer Stacked Films , 2004 .

[61]  V. Subramanian,et al.  Electrospinning of continuous aligned polymer fibers , 2004 .

[62]  M. Kotaki,et al.  Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. , 2004, Biomaterials.

[63]  R. Spretz,et al.  Use of Coaxial Gas Jackets to Stabilize Taylor Cones of Volatile Solutions and to Induce Particle‐to‐Fiber Transitions , 2004 .

[64]  Andreas Greiner,et al.  Compound Core–Shell Polymer Nanofibers by Co‐Electrospinning , 2003 .

[65]  M. Kotaki,et al.  A review on polymer nanofibers by electrospinning and their applications in nanocomposites , 2003 .

[66]  J. Ferraris,et al.  Electrospun MEH-PPV/SBA-15 composite nanofibers using a dual syringe method. , 2003, Journal of the American Chemical Society.

[67]  Jun Kameoka,et al.  A scanning tip electrospinning source for deposition of oriented nanofibres , 2003 .

[68]  Pankaj Gupta,et al.  Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach , 2003 .

[69]  Younan Xia,et al.  Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays , 2003 .

[70]  Changmo Sung,et al.  Morphological study of electrospun polycarbonates as a function of the solvent and processing voltage , 2003 .

[71]  E. Zussman,et al.  Failure modes of electrospun nanofibers , 2003 .

[72]  A. Barrero,et al.  A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol-gel chemistry and electrically forced liquid jets. , 2003, Journal of the American Chemical Society.

[73]  Yu Wang,et al.  Synthesis of lead zirconate titanate nanofibres and the Fourier-transform infrared characterization of their metallo-organic decomposition process , 2003 .

[74]  James J. Feng The stretching of an electrified non-Newtonian jet: A model for electrospinning , 2002 .

[75]  C. Sung,et al.  Microstructures of Electrospun Polycarbonate Fibers With Solvent Mixture THF and DMF by SEM/TEM , 2002, Microscopy and Microanalysis.

[76]  Cato T Laurencin,et al.  Electrospun nanofibrous structure: a novel scaffold for tissue engineering. , 2002, Journal of biomedical materials research.

[77]  David G Simpson,et al.  Electrospinning of collagen nanofibers. , 2002, Biomacromolecules.

[78]  James K. Hirvonen,et al.  Controlled deposition of electrospun poly(ethylene oxide) fibers , 2001 .

[79]  E. Zussman,et al.  Electrostatic field-assisted alignment of electrospun nanofibres , 2001 .

[80]  M. Brenner,et al.  Electrospinning and electrically forced jets. I. Stability theory , 2001 .

[81]  Darrell H. Reneker,et al.  Bending instability in electrospinning of nanofibers , 2001 .

[82]  J. Deitzel,et al.  The effect of processing variables on the morphology of electrospun nanofibers and textiles , 2001 .

[83]  David C. Martin,et al.  Processing and microstructural characterization of porous biocompatible protein polymer thin films , 1999 .

[84]  S. Chakarvarti,et al.  Template synthesis—a membrane based technology for generation of nano-/micro materials: a review , 1998 .

[85]  V. B. Gupta,et al.  Manufactured fibre technology , 1997 .

[86]  Jan Feijen,et al.  Phase-Separation Processes in Polymer-Solutions in Relation to Membrane Formation , 1996 .

[87]  Darrell H. Reneker,et al.  Structure and morphology of small diameter electrospun aramid fibers , 1995 .

[88]  Darrell H. Reneker,et al.  Electrospinning process and applications of electrospun fibers , 1993, Conference Record of the 1993 IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting.

[89]  L. Larrondo,et al.  Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties , 1981 .

[90]  L. Larrondo,et al.  Electrostatic fiber spinning from polymer melts. II. Examination of the flow field in an electrically driven jet , 1981 .

[91]  L. Larrondo,et al.  Electrostatic fiber spinning from polymer melts. III. Electrostatic deformation of a pendant drop of polymer melt , 1981 .

[92]  P. Baumgarten,et al.  Electrostatic spinning of acrylic microfibers , 1971 .

[93]  Geoffrey Ingram Taylor,et al.  Electrically driven jets , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[94]  G. Taylor The force exerted by an electric field on a long cylindrical conductor , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[95]  G. Taylor Studies in electrohydrodynamics. I. The circulation produced in a drop by an electric field , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[96]  Geoffrey Ingram Taylor,et al.  Disintegration of water drops in an electric field , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[97]  John Zeleny,et al.  Instability of Electrified Liquid Surfaces , 1917 .

[98]  J. Larmor Note on the complete scheme of electrodynamic equations of a moving material medium, and on electrostriction , 1898, Proceedings of the Royal Society of London.