Enclosing Chebyshev Expansions in Linear Time

We consider the problem of computing rigorous enclosures for polynomials represented in the Chebyshev basis. Our aim is to compare and develop algorithms with a linear complexity in terms of the polynomial degree. A first category of methods relies on a direct interval evaluation of the given Chebyshev expansion in which Chebyshev polynomials are bounded, e.g., with a divide-and-conquer strategy. Our main category of methods that are based on the Clenshaw recurrence includes interval Clenshaw with defect correction (ICDC), and the spectral transformation of Clenshaw recurrence rewritten as a discrete dynamical system. An extension of the barycentric representation to interval arithmetic is also considered that has a log-linear complexity as it takes advantage of a verified discrete cosine transform. We compare different methods and provide illustrative numerical experiments. In particular, our eigenvalue-based methods are interesting for bounding the range of high-degree interval polynomials. Some of the methods rigorously compute narrow enclosures for high-degree Chebyshev expansions at thousands of points in a few seconds on an average computer. We also illustrate how to employ our methods as an automatic a posteriori forward error analysis tool to monitor the accuracy of the Chebfun feval command.

[1]  G. Strang The Fundamental Theorem of Linear Algebra , 1993 .

[2]  T. J. Rivlin,et al.  Ultra-arithmetic II: intervals of polynomials , 1982 .

[3]  Nicolas Brisebarre,et al.  Validated and Numerically Efficient Chebyshev Spectral Methods for Linear Ordinary Differential Equations , 2018, ACM Trans. Math. Softw..

[4]  Bruno Lang,et al.  Closing the Case t = 3 for 3-D Spherical t-Designs Using a Result-Verifying Nonlinear Solver , 2010, Reliab. Comput..

[5]  Stan Wagon,et al.  The SIAM 100-Digit Challenge - A study in High-Accuracy Numerical Computing , 2004, The SIAM 100-Digit Challenge.

[6]  Heinz Rutishauser,et al.  Vorlesungen über numerische Mathematik , 1976 .

[7]  N. Nedialkov AN INTERVAL METHOD FOR INITIAL VALUE PROBLEMS IN LINEAR ORDINARY DIFFERENTIAL EQUATIONS , 2004 .

[8]  Allan Borodin,et al.  Fast Modular Transforms , 1974, J. Comput. Syst. Sci..

[9]  Xiaojun Chen,et al.  Spherical t휀-designs for approximations on the sphere , 2015, Math. Comput..

[10]  Rudolf J. Lohner,et al.  On the Ubiquity of the Wrapping Effect in the Computation of Error Bounds , 2001, Perspectives on Enclosure Methods.

[11]  Jean-Michel Muller,et al.  Handbook of Floating-Point Arithmetic (2nd Ed.) , 2018 .

[12]  M. Berz,et al.  TAYLOR MODELS AND OTHER VALIDATED FUNCTIONAL INCLUSION METHODS , 2003 .

[13]  Nico M. Temme,et al.  Numerical methods for special functions , 2007 .

[14]  K. Baker,et al.  Standardized notation in interval analysis , 2010 .

[15]  Tomás Dzetkulic,et al.  Rigorous integration of non-linear ordinary differential equations in chebyshev basis , 2015, Numerical Algorithms.

[16]  Cleve B. Moler,et al.  Iterative Refinement in Floating Point , 1967, JACM.

[17]  R. Lohner Einschliessung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben und Anwendungen , 1988 .

[18]  Nicolas Brisebarre,et al.  Chebyshev interpolation polynomial-based tools for rigorous computing , 2010, ISSAC.

[19]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[20]  Wolfram Koepf,et al.  Efficient Computation of Chebyshev Polynomials in Computer Algebra , 2003 .

[21]  G. Corliss,et al.  C-Xsc: A C++ Class Library for Extended Scientific Computing , 1993 .

[22]  N. Higham The numerical stability of barycentric Lagrange interpolation , 2004 .

[23]  Xiaojun Chen,et al.  Computational existence proofs for spherical t-designs , 2011, Numerische Mathematik.

[24]  T. Hrycak,et al.  Evaluation of Chebyshev polynomials by a three-term recurrence in floating-point arithmetic , 2018 .

[25]  Lloyd N. Trefethen,et al.  Barycentric Lagrange Interpolation , 2004, SIAM Rev..

[26]  Siegfried M. Rump,et al.  Journal of Computational and Applied Mathematics Accurate Solution of Dense Linear Systems, Part Ii: Algorithms Using Directed Rounding , 2022 .

[27]  V. Stahl Interval Methods for Bounding the Range of Polynomials and Solving Systems of Nonlinear Equations , 2007 .

[28]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[29]  A. Neumaier Interval methods for systems of equations , 1990 .

[30]  Lloyd N. Trefethen,et al.  Smooth Random Functions, Random ODEs, and Gaussian Processes , 2019, SIAM Rev..

[31]  Siegfried M. Rump,et al.  Accurate Sum and Dot Product , 2005, SIAM J. Sci. Comput..

[32]  Willard L. Miranker,et al.  Self-Validating Numerics for Function Space Problems: Computation with Guarantees for Differential and Integral Equations , 1984 .

[33]  Nicholas J. Higham,et al.  Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions , 2018, SIAM J. Sci. Comput..

[34]  J. Borwein The SIAM 100-Digit challenge: a study in high-accuracy numerical computing , 1987 .

[35]  Klaus Böhmer Defect correction methods - theory and applications , 1984, Computing : Supplementum.

[36]  Willard L. Miranker,et al.  Self-Validating Numerics for Function Space Problems , 1984 .

[37]  Siegfried M. Rump,et al.  Accurate Floating-Point Summation Part II: Sign, K-Fold Faithful and Rounding to Nearest , 2008, SIAM J. Sci. Comput..

[38]  A. C. R. Newbery Error Analysis for Polynomial Evaluation , 1974 .

[40]  Martine Ceberio,et al.  Horner's Rule for Interval Evaluation Revisited , 2002, Computing.

[41]  C. W. Clenshaw A note on the summation of Chebyshev series , 1955 .

[42]  Ulrich Kulisch,et al.  Numerical Toolbox for Verified Computing I: Basic Numerical Problems Theory, Algorithms, and Pascal-Xsc Programs , 1994 .

[43]  Tom Gambill,et al.  Logarithmic reduction of the wrapping effect with application to ordinary differential equations , 1988 .

[44]  Siegfried M. Rump,et al.  Accurate Floating-Point Summation Part I: Faithful Rounding , 2008, SIAM J. Sci. Comput..

[45]  L. Trefethen Approximation Theory and Approximation Practice (Other Titles in Applied Mathematics) , 2012 .

[46]  Siegfried M. Rump,et al.  Verification methods: rigorous results using floating-point arithmetic , 2010, Acta Numerica.

[47]  Éric Schost,et al.  Fast Conversion Algorithms for Orthogonal Polynomials , 2008, ArXiv.

[48]  James Demmel,et al.  Error bounds from extra-precise iterative refinement , 2006, TOMS.

[49]  P. Henrici Barycentric formulas for interpolating trigonometric polynomials and their conjugates , 1979 .

[50]  Walter Krämer,et al.  Numerical Toolbox for Verified Computing II: Advanced Numerical Problems , 2006 .

[51]  S. Rump Rigorous and Portable Standard Functions , 2001 .

[52]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[53]  Ulrich W. Kulisch,et al.  Mathematics and Speed for Interval Arithmetic , 2019, ACM Transactions on Mathematical Software.

[54]  Vincent Lefèvre,et al.  Optimized Binary64 and Binary128 Arithmetic with GNU MPFR , 2017, 2017 IEEE 24th Symposium on Computer Arithmetic (ARITH).

[55]  G. Mayer Interval Analysis: And Automatic Result Verification , 2017 .

[56]  Shankar P. Bhattacharyya,et al.  Robust Control: The Parametric Approach , 1995 .

[57]  Herbert E. Salzer,et al.  Lagrangian interpolation at the Chebyshev points xn, [ngr][equiv]cos([ngr][pgr]/n), [ngr]=0(1) n; some unnoted advantages , 1972, Comput. J..

[58]  Jean-Michel Muller,et al.  Tight and Rigorous Error Bounds for Basic Building Blocks of Double-Word Arithmetic , 2017, ACM Trans. Math. Softw..

[59]  A. Neumaier The Wrapping Effect, Ellipsoid Arithmetic, Stability and Confidence Regions , 1993 .

[60]  Victor Magron,et al.  Interval Enclosures of Upper Bounds of Roundoff Errors Using Semidefinite Programming , 2016, ACM Trans. Math. Softw..

[61]  Walter F. Mascarenhas,et al.  The stability of barycentric interpolation at the Chebyshev points of the second kind , 2013, Numerische Mathematik.

[62]  M. Joldes,et al.  Rigorous Polynomial Approximations and Applications , 2011 .

[63]  Ulrich W. Kulisch,et al.  C++ Toolbox for Verified Scientific Computing I: Basic Numerical Problems , 1997 .

[64]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[65]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[66]  Will Tribbey,et al.  Numerical Recipes: The Art of Scientific Computing (3rd Edition) is written by William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, and published by Cambridge University Press, © 2007, hardback, ISBN 978-0-521-88068-8, 1235 pp. , 1987, SOEN.

[67]  B. Lang,et al.  Fast and Accurate Multi-Argument Interval Evaluation of Polynomials , 2006, 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006).

[68]  K. Bohmer Defect Correction Methods: Theory and Applications , 1984 .

[69]  S. Rump Fast and Parallel Interval Arithmetic , 1999 .

[70]  Nedialko S. Nedialkov,et al.  A New Perspective on the Wrapping Effect in Interval Methods for Initial Value Problems for Ordinary Differential Equations , 2001, Perspectives on Enclosure Methods.

[71]  T. J. Rivlin,et al.  Ultra-arithmetic I: Function data types , 1982 .

[72]  G. Strang The Fundamental Theorem of Linear Algebra , 1993 .

[73]  Germund Dahlquist,et al.  Numerical methods in scientific computing , 2008 .

[74]  L. Trefethen,et al.  Numerical linear algebra , 1997 .