Enclosing Chebyshev Expansions in Linear Time
暂无分享,去创建一个
[1] G. Strang. The Fundamental Theorem of Linear Algebra , 1993 .
[2] T. J. Rivlin,et al. Ultra-arithmetic II: intervals of polynomials , 1982 .
[3] Nicolas Brisebarre,et al. Validated and Numerically Efficient Chebyshev Spectral Methods for Linear Ordinary Differential Equations , 2018, ACM Trans. Math. Softw..
[4] Bruno Lang,et al. Closing the Case t = 3 for 3-D Spherical t-Designs Using a Result-Verifying Nonlinear Solver , 2010, Reliab. Comput..
[5] Stan Wagon,et al. The SIAM 100-Digit Challenge - A study in High-Accuracy Numerical Computing , 2004, The SIAM 100-Digit Challenge.
[6] Heinz Rutishauser,et al. Vorlesungen über numerische Mathematik , 1976 .
[7] N. Nedialkov. AN INTERVAL METHOD FOR INITIAL VALUE PROBLEMS IN LINEAR ORDINARY DIFFERENTIAL EQUATIONS , 2004 .
[8] Allan Borodin,et al. Fast Modular Transforms , 1974, J. Comput. Syst. Sci..
[9] Xiaojun Chen,et al. Spherical t휀-designs for approximations on the sphere , 2015, Math. Comput..
[10] Rudolf J. Lohner,et al. On the Ubiquity of the Wrapping Effect in the Computation of Error Bounds , 2001, Perspectives on Enclosure Methods.
[11] Jean-Michel Muller,et al. Handbook of Floating-Point Arithmetic (2nd Ed.) , 2018 .
[12] M. Berz,et al. TAYLOR MODELS AND OTHER VALIDATED FUNCTIONAL INCLUSION METHODS , 2003 .
[13] Nico M. Temme,et al. Numerical methods for special functions , 2007 .
[14] K. Baker,et al. Standardized notation in interval analysis , 2010 .
[15] Tomás Dzetkulic,et al. Rigorous integration of non-linear ordinary differential equations in chebyshev basis , 2015, Numerical Algorithms.
[16] Cleve B. Moler,et al. Iterative Refinement in Floating Point , 1967, JACM.
[17] R. Lohner. Einschliessung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben und Anwendungen , 1988 .
[18] Nicolas Brisebarre,et al. Chebyshev interpolation polynomial-based tools for rigorous computing , 2010, ISSAC.
[19] William H. Press,et al. Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .
[20] Wolfram Koepf,et al. Efficient Computation of Chebyshev Polynomials in Computer Algebra , 2003 .
[21] G. Corliss,et al. C-Xsc: A C++ Class Library for Extended Scientific Computing , 1993 .
[22] N. Higham. The numerical stability of barycentric Lagrange interpolation , 2004 .
[23] Xiaojun Chen,et al. Computational existence proofs for spherical t-designs , 2011, Numerische Mathematik.
[24] T. Hrycak,et al. Evaluation of Chebyshev polynomials by a three-term recurrence in floating-point arithmetic , 2018 .
[25] Lloyd N. Trefethen,et al. Barycentric Lagrange Interpolation , 2004, SIAM Rev..
[26] Siegfried M. Rump,et al. Journal of Computational and Applied Mathematics Accurate Solution of Dense Linear Systems, Part Ii: Algorithms Using Directed Rounding , 2022 .
[27] V. Stahl. Interval Methods for Bounding the Range of Polynomials and Solving Systems of Nonlinear Equations , 2007 .
[28] Siegfried M. Rump,et al. INTLAB - INTerval LABoratory , 1998, SCAN.
[29] A. Neumaier. Interval methods for systems of equations , 1990 .
[30] Lloyd N. Trefethen,et al. Smooth Random Functions, Random ODEs, and Gaussian Processes , 2019, SIAM Rev..
[31] Siegfried M. Rump,et al. Accurate Sum and Dot Product , 2005, SIAM J. Sci. Comput..
[32] Willard L. Miranker,et al. Self-Validating Numerics for Function Space Problems: Computation with Guarantees for Differential and Integral Equations , 1984 .
[33] Nicholas J. Higham,et al. Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions , 2018, SIAM J. Sci. Comput..
[34] J. Borwein. The SIAM 100-Digit challenge: a study in high-accuracy numerical computing , 1987 .
[35] Klaus Böhmer. Defect correction methods - theory and applications , 1984, Computing : Supplementum.
[36] Willard L. Miranker,et al. Self-Validating Numerics for Function Space Problems , 1984 .
[37] Siegfried M. Rump,et al. Accurate Floating-Point Summation Part II: Sign, K-Fold Faithful and Rounding to Nearest , 2008, SIAM J. Sci. Comput..
[38] A. C. R. Newbery. Error Analysis for Polynomial Evaluation , 1974 .
[40] Martine Ceberio,et al. Horner's Rule for Interval Evaluation Revisited , 2002, Computing.
[41] C. W. Clenshaw. A note on the summation of Chebyshev series , 1955 .
[42] Ulrich Kulisch,et al. Numerical Toolbox for Verified Computing I: Basic Numerical Problems Theory, Algorithms, and Pascal-Xsc Programs , 1994 .
[43] Tom Gambill,et al. Logarithmic reduction of the wrapping effect with application to ordinary differential equations , 1988 .
[44] Siegfried M. Rump,et al. Accurate Floating-Point Summation Part I: Faithful Rounding , 2008, SIAM J. Sci. Comput..
[45] L. Trefethen. Approximation Theory and Approximation Practice (Other Titles in Applied Mathematics) , 2012 .
[46] Siegfried M. Rump,et al. Verification methods: rigorous results using floating-point arithmetic , 2010, Acta Numerica.
[47] Éric Schost,et al. Fast Conversion Algorithms for Orthogonal Polynomials , 2008, ArXiv.
[48] James Demmel,et al. Error bounds from extra-precise iterative refinement , 2006, TOMS.
[49] P. Henrici. Barycentric formulas for interpolating trigonometric polynomials and their conjugates , 1979 .
[50] Walter Krämer,et al. Numerical Toolbox for Verified Computing II: Advanced Numerical Problems , 2006 .
[51] S. Rump. Rigorous and Portable Standard Functions , 2001 .
[52] R. Baker Kearfott,et al. Introduction to Interval Analysis , 2009 .
[53] Ulrich W. Kulisch,et al. Mathematics and Speed for Interval Arithmetic , 2019, ACM Transactions on Mathematical Software.
[54] Vincent Lefèvre,et al. Optimized Binary64 and Binary128 Arithmetic with GNU MPFR , 2017, 2017 IEEE 24th Symposium on Computer Arithmetic (ARITH).
[55] G. Mayer. Interval Analysis: And Automatic Result Verification , 2017 .
[56] Shankar P. Bhattacharyya,et al. Robust Control: The Parametric Approach , 1995 .
[57] Herbert E. Salzer,et al. Lagrangian interpolation at the Chebyshev points xn, [ngr][equiv]cos([ngr][pgr]/n), [ngr]=0(1) n; some unnoted advantages , 1972, Comput. J..
[58] Jean-Michel Muller,et al. Tight and Rigorous Error Bounds for Basic Building Blocks of Double-Word Arithmetic , 2017, ACM Trans. Math. Softw..
[59] A. Neumaier. The Wrapping Effect, Ellipsoid Arithmetic, Stability and Confidence Regions , 1993 .
[60] Victor Magron,et al. Interval Enclosures of Upper Bounds of Roundoff Errors Using Semidefinite Programming , 2016, ACM Trans. Math. Softw..
[61] Walter F. Mascarenhas,et al. The stability of barycentric interpolation at the Chebyshev points of the second kind , 2013, Numerische Mathematik.
[62] M. Joldes,et al. Rigorous Polynomial Approximations and Applications , 2011 .
[63] Ulrich W. Kulisch,et al. C++ Toolbox for Verified Scientific Computing I: Basic Numerical Problems , 1997 .
[64] G. Alefeld,et al. Introduction to Interval Computation , 1983 .
[65] T. J. Rivlin. The Chebyshev polynomials , 1974 .
[66] Will Tribbey,et al. Numerical Recipes: The Art of Scientific Computing (3rd Edition) is written by William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, and published by Cambridge University Press, © 2007, hardback, ISBN 978-0-521-88068-8, 1235 pp. , 1987, SOEN.
[67] B. Lang,et al. Fast and Accurate Multi-Argument Interval Evaluation of Polynomials , 2006, 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006).
[68] K. Bohmer. Defect Correction Methods: Theory and Applications , 1984 .
[69] S. Rump. Fast and Parallel Interval Arithmetic , 1999 .
[70] Nedialko S. Nedialkov,et al. A New Perspective on the Wrapping Effect in Interval Methods for Initial Value Problems for Ordinary Differential Equations , 2001, Perspectives on Enclosure Methods.
[71] T. J. Rivlin,et al. Ultra-arithmetic I: Function data types , 1982 .
[72] G. Strang. The Fundamental Theorem of Linear Algebra , 1993 .
[73] Germund Dahlquist,et al. Numerical methods in scientific computing , 2008 .
[74] L. Trefethen,et al. Numerical linear algebra , 1997 .