Deciphering DNA replication dynamics in eukaryotic cell populations in relation with their averaged chromatin conformations

[1]  J. Jain Quantitative comparisons between theory and experiment in fractional quantum Hall effect , 2018 .

[2]  Françoise Argoul,et al.  Structural organization of human replication timing domains , 2015, FEBS letters.

[3]  Alain Arneodo,et al.  Embryonic Stem Cell Specific “Master” Replication Origins at the Heart of the Loss of Pluripotency , 2015, PLoS Comput. Biol..

[4]  Katsuhiko Shirahige,et al.  Temporal and spatial regulation of eukaryotic DNA replication: from regulated initiation to genome-scale timing program. , 2014, Seminars in cell & developmental biology.

[5]  S. A. White Genome Duplication: Concepts, Mechanisms, Evolution, and Disease. Melvin L. DePamphilis and Stephen D. Bell, Garland Science, 2011, 450 pp., ISBN 978‐0‐4154–4206‐0 (paperback, $162.00). , 2014 .

[6]  Franck Picard,et al.  The Spatiotemporal Program of DNA Replication Is Associated with Specific Combinations of Chromatin Marks in Human Cells , 2014, PLoS genetics.

[7]  Hyun-Joo Kim,et al.  Anomalous diffusion induced by enhancement of memory. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  A. Arneodo From DNA sequence to genome structure and function , 2014 .

[9]  A Baker,et al.  Inferring the spatiotemporal DNA replication program from noisy data. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  A. Arneodo,et al.  From simple bacterial and archaeal replicons to replication N/U-domains. , 2013, Journal of molecular biology.

[11]  Renata Retkute,et al.  High-Resolution Replication Profiles Define the Stochastic Nature of Genome Replication Initiation and Termination , 2013, Cell reports.

[12]  Azedine Zoufir,et al.  Human Genome Replication Proceeds through Four Chromatin States , 2013, PLoS Comput. Biol..

[13]  J. Diffley,et al.  Regulating DNA replication in eukarya. , 2013, Cold Spring Harbor perspectives in biology.

[14]  S. Bekiranov,et al.  Bubble-seq analysis of the human genome reveals distinct chromatin-mediated mechanisms for regulating early- and late-firing origins , 2013, Genome research.

[15]  Manolis Kellis,et al.  Constitutive nuclear lamina–genome interactions are highly conserved and associated with A/T-rich sequence , 2013, Genome research.

[16]  O. Aparicio,et al.  Location, location, location: it's all in the timing for replication origins. , 2013, Genes & development.

[17]  J Bechhoefer,et al.  Inferring where and when replication initiates from genome-wide replication timing data. , 2012, Physical review letters.

[18]  Olivier Hyrien,et al.  Do replication forks control late origin firing in Saccharomyces cerevisiae? , 2011, Nucleic acids research.

[19]  Alain Arneodo,et al.  Evidence for Sequential and Increasing Activation of Replication Origins along Replication Timing Gradients in the Human Genome , 2011, PLoS Comput. Biol..

[20]  Renata Retkute,et al.  Dynamics of DNA replication in yeast. , 2011, Physical review letters.

[21]  J. Hamlin,et al.  Cdc45 Limits Replicon Usage from a Low Density of preRCs in Mammalian Cells , 2011, PloS one.

[22]  Françoise Argoul,et al.  Multi-scale coding of genomic information: From DNA sequence to genome structure and function , 2011 .

[23]  L. Mirny The fractal globule as a model of chromatin architecture in the cell , 2011, Chromosome Research.

[24]  John Bechhoefer,et al.  Modeling genome-wide replication kinetics reveals a mechanism for regulation of replication timing , 2010, Molecular systems biology.

[25]  B Kahng,et al.  Spectral dimensions of hierarchical scale-free networks with weighted shortcuts. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Renata Retkute,et al.  Mathematical modelling of whole chromosome replication , 2010, Nucleic acids research.

[27]  William Stafford Noble,et al.  A Three-Dimensional Model of the Yeast Genome , 2010, Nature.

[28]  David Fenyö,et al.  GINS motion reveals replication fork progression is remarkably uniform throughout the yeast genome , 2010, Molecular systems biology.

[29]  Ralf Metzler,et al.  Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  J. Diffley,et al.  Concerted Loading of Mcm2–7 Double Hexamers around DNA during DNA Replication Origin Licensing , 2009, Cell.

[31]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[32]  Olivier Hyrien,et al.  Universal Temporal Profile of Replication Origin Activation in Eukaryotes , 2009, PloS one.

[33]  Xin Quan Ge,et al.  A model for DNA replication showing how dormant origins safeguard against replication fork failure , 2009, EMBO reports.

[34]  John Bechhoefer,et al.  Control of DNA replication by anomalous reaction-diffusion kinetics. , 2009, Physical review letters.

[35]  Grigoriy E. Pinchuk,et al.  Stochastic hybrid modeling of DNA replication across a complete genome , 2009 .

[36]  Olivier Hyrien,et al.  A Dynamic Stochastic Model for DNA Replication Initiation in Early Embryos , 2008, PloS one.

[37]  Scott Cheng‐Hsin Yang,et al.  How Xenopus laevis embryos replicate reliably: investigating the random-completion problem. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Zhifeng Shao,et al.  DNA combing reveals intrinsic temporal disorder in the replication of yeast chromosome VI. , 2008, Journal of molecular biology.

[39]  Simon Tavaré,et al.  Genome-wide mapping of ORC and Mcm2p binding sites on tiling arrays and identification of essential ARS consensus sequences in S. cerevisiae , 2006, BMC Genomics.

[40]  Melvin L. DePamphilis,et al.  DNA replication and human disease , 2006 .

[41]  Daniel S. Banks,et al.  Anomalous diffusion of proteins due to molecular crowding. , 2005, Biophysical journal.

[42]  David M. MacAlpine,et al.  A genomic view of eukaryotic DNA replication , 2005, Chromosome Research.

[43]  M. Weiss,et al.  Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. , 2004, Biophysical journal.

[44]  John Herrick,et al.  Persistence Length of Chromatin Determines Origin Spacing in Xenopus Early-Embryo DNA Replication: Quantitative Comparisons between Theory and Experiment , 2003, Cell cycle.

[45]  J. Newport,et al.  CpG Methylation of DNA Restricts Prereplication Complex Assembly in Xenopus Egg Extracts , 2003, Molecular and Cellular Biology.

[46]  Olivier Hyrien,et al.  Paradoxes of eukaryotic DNA replication: MCM proteins and the random completion problem , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[47]  T. Prokhorova,et al.  MCM2–7 Complexes Bind Chromatin in a Distributed Pattern Surrounding the Origin Recognition Complex inXenopus Egg Extracts* , 2002, The Journal of Biological Chemistry.

[48]  John Herrick,et al.  Kinetic model of DNA replication in eukaryotic organisms. , 2001, Journal of molecular biology.

[49]  John J. Wyrick,et al.  Genome-Wide Distribution of ORC and MCM Proteins in S. cerevisiae: High-Resolution Mapping of Replication Origins , 2001, Science.

[50]  Ronald W. Davis,et al.  Replication dynamics of the yeast genome. , 2001, Science.

[51]  A. Faleiros,et al.  Kinetics of phase change , 2000 .

[52]  O. Hyrien,et al.  Mechanisms ensuring rapid and complete DNA replication despite random initiation in Xenopus early embryos. , 2000, Journal of molecular biology.

[53]  M. V. Rossum,et al.  Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion , 1998, cond-mat/9804141.

[54]  J. Diffley Replication control: Choreographing replication origins , 1998, Current Biology.

[55]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[56]  L. Matsson Response theory for non-stationary ligand-receptor interaction and a solution to the growth signal firing problem. , 1996, Journal of theoretical biology.

[57]  J. Quastel Diffusion in Disordered Media , 1996 .

[58]  C. Newlon,et al.  The structure and function of yeast ARS elements. , 1993, Current opinion in genetics & development.

[59]  W. L. Fangman,et al.  Mapping replication origins in yeast chromosomes , 1991, BioEssays : news and reviews in molecular, cellular and developmental biology.

[60]  Raoul Kopelman,et al.  Rate processes on fractals: Theory, simulations, and experiments , 1986 .

[61]  G. Toulouse,et al.  Random walks on fractal structures and percolation clusters , 1983 .

[62]  P. G. de Gennes,et al.  Kinetics of diffusion‐controlled processes in dense polymer systems. I. Nonentangled regimes , 1982 .

[63]  S. Lundqvist A guide to Feynman diagrams in the many-body problem , 1979 .

[64]  A. Fetter,et al.  Quantum Theory of Many-Particle Systems , 1971 .

[65]  L. Hove Correlations in Space and Time and Born Approximation Scattering in Systems of Interacting Particles , 1954 .

[66]  M. Avrami,et al.  Kinetics of Phase Change 2 , 1940 .

[67]  M. Avrami Kinetics of Phase Change. I General Theory , 1939 .