Scheme for Implementing Assisted Cloning of an Unknown Tripartite Entangled State

Abstract In this paper, we propose a protocol which can realize quantum cloning of an unknown tripartite entangled state and its orthogonal complement state with assistance from a state preparer. The first stage of the protocol requires usual teleportation via three entangled particle pairs as quantum channel. In the second stage of the protocol, the perfect copies and complement copies of an unknown state can be produced with the assistance (through a tripartite projective measurement) of the state preparer. We also present a scheme for the teleportation by using non-maximally entangled quantum channel. It is shown that the clones and complement clones of the unknown state can be obtained with certain probability in the latter scheme.

[1]  Guang-Can Guo,et al.  Probabilistic teleportation and entanglement matching , 2000 .

[2]  Zhan You-Bang,et al.  Schemes for Probabilistic Teleportation of an Unknown Three-Particle Three-Level Entangled State , 2006 .

[3]  Buzek,et al.  Quantum copying: Beyond the no-cloning theorem. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[4]  Guang-Can Guo,et al.  Teleportation of a two-particle entangled state via entanglement swapping , 2000 .

[5]  Optimal cloning for two pairs of orthogonal states , 2001, quant-ph/0110099.

[6]  Xiu Xiao-Ming,et al.  A new representation and probabilistic teleportation of an arbitrary and unknown N-particle state , 2006 .

[7]  Li Wanli,et al.  Erratum: Probabilistic teleportation and entanglement matching [Phys. Rev. A 61, 034301 (2000)] , 2007 .

[8]  Arun Kumar Pati Assisted cloning and orthogonal complementing of an unknown state , 2000 .

[9]  Teleportation of a three-particle entangled W state , 2002 .

[10]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[11]  Ax Chen,et al.  Reestablishment of an Unknown State and Its Orthogonal Complement State with Assistance , 2003 .

[12]  Mark Hillery,et al.  QUANTUM COPYING : FUNDAMENTAL INEQUALITIES , 1997 .

[13]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[14]  詹佑邦 Teleportation of N-particle entangled W state via entanglement swapping , 2005 .

[15]  Jianxing Fang,et al.  Probabilistic teleportation of a three-particle state via three pairs of entangled particles , 2003 .

[16]  You-Bang Zhan,et al.  Quantum Cloning of an Unknown Two-Particle Entangled State with Assistance , 2005 .

[17]  G. Guo,et al.  Probabilistic Cloning and Identification of Linearly Independent Quantum States , 1998, quant-ph/9804064.

[18]  A. Zeilinger Experiment and the Foundations of Quantum Physics , 1999 .

[19]  Zhan You-Bang,et al.  Teleportation of N-particle entangled W state via entanglement swapping , 2004 .

[20]  Guang-Can Guo,et al.  Probabilistic teleportation of two-particle entangled state , 2000 .

[21]  M. Murao,et al.  Quantum telecloning and multiparticle entanglement , 1998, quant-ph/9806082.

[22]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[23]  S. Massar,et al.  Optimal Quantum Cloning Machines , 1997, quant-ph/9705046.

[24]  V. N. Gorbachev,et al.  Quantum teleportation of an Einstein-Podolsy-Rosen pair using an entangled three-particle state , 2000 .

[25]  R. Werner OPTIMAL CLONING OF PURE STATES , 1998, quant-ph/9804001.