Evolution of High‐Speed Jets and Plasmoids Downstream of the Quasi‐Perpendicular Bow Shock

Plasma structures with enhanced dynamic pressure, density, or speed are often observed in Earth's magnetosheath. We present a statistical study of these structures, known as jets and fast plasmoids, in the magnetosheath, downstream of both the quasi‐perpendicular and quasi‐parallel bow shocks. Using measurements from the four Magnetospheric Multiscale (MMS) spacecraft and OMNI solar wind data from 2015–2017, we present observations of jets during different upstream conditions and in the wide range of distances from the bow shock. Jets observed downstream of the quasi‐parallel bow shock are seen to propagate deeper and faster into the magnetosheath and on toward the magnetopause. We estimate the shape of the structures by treating the leading edge as a shock surface, and the result is that the jets are elongated in the direction of propagation but also that they expand more quickly in the perpendicular direction as they propagate through the magnetosheath.

[1]  F. Plaschke,et al.  Jets in the magnetosheath: IMF control of where they occur , 2019, Annales Geophysicae.

[2]  C. Russell,et al.  Shock ripples observed by the MMS spacecraft: ion reflection and dispersive properties , 2018, Plasma Physics and Controlled Fusion.

[3]  X. Blanco‐Cano,et al.  Magnetosheath jet properties and evolution as determined by a global hybrid-Vlasov simulation , 2018, Annales Geophysicae.

[4]  N. Omidi,et al.  Jets Downstream of Collisionless Shocks , 2018, Space Science Reviews.

[5]  F. Plaschke,et al.  Plasma flow patterns in and around magnetosheath jets , 2018 .

[6]  C. Russell,et al.  Magnetosheath High‐Speed Jets: Internal Structure and Interaction With Ambient Plasma , 2017 .

[7]  C. Russell,et al.  Rippled Quasiperpendicular Shock Observed by the Magnetospheric Multiscale Spacecraft. , 2016, Physical review letters.

[8]  C. Russell,et al.  Strong current sheet at a magnetosheath jet: Kinetic structure and electron acceleration , 2016 .

[9]  O. Hannuksela,et al.  Mirror modes in the Earth's magnetosheath: Results from a global hybrid‐Vlasov simulation , 2016 .

[10]  U. Gliese,et al.  Fast Plasma Investigation for Magnetospheric Multiscale , 2016 .

[11]  V. Angelopoulos,et al.  Geoeffective jets impacting the magnetopause are very common , 2016, Journal of geophysical research. Space physics.

[12]  Wolfgang Baumjohann,et al.  The Magnetospheric Multiscale Magnetometers , 2016 .

[13]  Thomas E. Moore,et al.  Magnetospheric Multiscale Overview and Science Objectives , 2016 .

[14]  D. Sibeck,et al.  Magnetosheath plasma structures and their relation to foreshock processes , 2015 .

[15]  T. Karlsson,et al.  On the origin of magnetosheath plasmoids and their relation to magnetosheath jets , 2015 .

[16]  A. Dmitriev,et al.  Large‐scale jets in the magnetosheath and plasma penetration across the magnetopause: THEMIS observations , 2015, 1508.05229.

[17]  J. Souček,et al.  Magnetosheath plasma stability and ULF wave occurrence as a function of location in the magnetosheath and upstream bow shock parameters , 2015 .

[18]  L. Přech,et al.  Upstream and downstream wave packets associated with low‐Mach number interplanetary shocks , 2014 .

[19]  T. Karlsson,et al.  Waves in high-speed plasmoids in the magnetosheath and at the magnetopause , 2014 .

[20]  David G. Sibeck,et al.  The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas , 2014 .

[21]  D. Sibeck,et al.  Magnetosheath filamentary structures formed by ion acceleration at the quasi‐parallel bow shock , 2014 .

[22]  F. Plaschke,et al.  On the generation of magnetosheath high-speed jets by bow shock ripples , 2013, Journal of geophysical research. Space physics.

[23]  V. Angelopoulos,et al.  Anti-sunward high-speed jets in the subsolar magnetosheath , 2013 .

[24]  L. Přech,et al.  Ion scales of quasi‐perpendicular low‐Mach‐number interplanetary shocks , 2013 .

[25]  K. Nykyri,et al.  The statistical mapping of magnetosheath plasma properties based on THEMIS measurements in the magnetosheath interplanetary medium reference frame , 2013 .

[26]  M. Gedalin,et al.  Two‐dimensional hybrid simulations of quasi‐perpendicular collisionless shock dynamics: Gyrating downstream ion distributions , 2013 .

[27]  T. Horbury,et al.  Magnetosheath dynamic pressure enhancements: occurrence and typical properties , 2013 .

[28]  A. Szabo,et al.  Shocklets, SLAMS, and field‐aligned ion beams in the terrestrial foreshock , 2012, 1207.5561.

[29]  R. Lundin,et al.  Plasma penetration of the dayside magnetopause , 2012 .

[30]  Zhongwei Yang,et al.  Impact of the rippling of a perpendicular shock front on ion dynamics , 2012 .

[31]  T. Horbury,et al.  Magnetosheath pressure pulses: Generation downstream of the bow shock from solar wind discontinuities , 2012 .

[32]  T. Karlsson,et al.  Localized density enhancements in the magnetosheath: Three‐dimensional morphology and possible importance for impulsive penetration , 2012 .

[33]  H. Koskinen,et al.  Supermagnetosonic subsolar magnetosheath jets and their effects: from the solar wind to the ionospheric convection , 2012 .

[34]  E. Amata,et al.  Super fast plasma streams as drivers of transient and anomalous magnetospheric dynamics , 2012 .

[35]  Q. Lu,et al.  The evolution of the electric field at a nonstationary perpendicular shock , 2009 .

[36]  Uppsala,et al.  Supermagnetosonic jets behind a collisionless quasiparallel shock. , 2009, Physical review letters.

[37]  C. Russell,et al.  Collisionless relaxation of ion distributions downstream of laminar quasi-perpendicular shocks , 2009 .

[38]  B. Lembège,et al.  Shock front nonstationarity and ion acceleration in supercritical perpendicular shocks , 2009 .

[39]  A. Szabo,et al.  Modified “Rankine‐Hugoniot” shock fitting technique: Simultaneous solution for shock normal and speed , 2008 .

[40]  R. Treumann,et al.  High energy jets in the Earth’s magnetosheath: Implications for plasma dynamics and anomalous transport , 2008 .

[41]  C. Russell,et al.  Macrostructure of collisionless bow shocks: 2. ULF waves in the foreshock and magnetosheath , 2006 .

[42]  J. King,et al.  Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data , 2005 .

[43]  T. Terasawa,et al.  Selected Problems in Collisionless-Shock Physics , 2004 .

[44]  J. Sauvaud,et al.  Production of gyrating ions from nonlinear wave-particle interaction upstream from the Earth's bow shock: A case study from Cluster-CIS , 2003 .

[45]  M. W. Dunlop,et al.  Four‐point Cluster application of magnetic field analysis tools: The Curlometer , 2002 .

[46]  S. Schwartz,et al.  ISSI Book on Analysis Methods for Multi-Spacecraft Data , 2000 .

[47]  Hideaki Kawano,et al.  Magnetopause location under extreme solar wind conditions , 1998 .

[48]  L. Přech,et al.  Transient flux enhancements in the magnetosheath , 1998 .

[49]  C. Russell,et al.  Determining the standoff distance of the bow shock: Mach number dependence and use of models , 1994 .

[50]  D. Burgess,et al.  The role of upstream waves in supercritical quasi‐parallel shock re‐formation , 1992 .

[51]  Hermann Lühr,et al.  Observations of short large-amplitude magnetic structures at a quasi-parallel shock , 1992 .

[52]  L. Hall The Magnetospheric Multiscale , 2015 .

[53]  C. Russell,et al.  ULF waves and their influence on bow shock and magnetosheath structures , 2004 .

[54]  Steven J. Schwartz,et al.  Magnetic field structures and related phenomena at quasi-parallel shocks , 1991 .

[55]  D. Burgess On the effect of a tangential discontinuity on ions specularly reflected at an oblique shock , 1989 .