Extreme eigenvalues of real symmetric Toeplitz matrices

We exploit the even and odd spectrum of real symmetric Toeplitz matrices for the computation of their extreme eigenvalues, which are obtained as the solutions of spectral, or secular, equations. We also present a concise convergence analysis for a method to solve these spectral equations, along with an efficient stopping rule, an error analysis, and extensive numerical results.

[1]  J. Cuppen A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .

[2]  A. Cantoni,et al.  Eigenvalues and eigenvectors of symmetric centrosymmetric matrices , 1976 .

[3]  N. Levinson The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .

[4]  Amir Dembo,et al.  Bounds on the extreme eigenvalues of positive-definite Toeplitz matrices , 1988, IEEE Trans. Inf. Theory.

[5]  Aaron Melman Spectral functions for real symmetric Toeplitz matrices , 1998 .

[6]  N. Wiener The Wiener RMS (Root Mean Square) Error Criterion in Filter Design and Prediction , 1949 .

[7]  Dawei Huang Symmetric solutions and eigenvalue problems of Toeplitz systems , 1992, IEEE Trans. Signal Process..

[8]  D. Hertz Simple bounds on the extreme eigenvalues of Toeplitz matrices , 1992, IEEE Trans. Inf. Theory.

[9]  Heinrich Voss Symmetric schemes for computing the minimum eigenvalue of a symmetric Toeplitz matrix , 1999 .

[10]  Aaron Melman,et al.  A unifying convergence analysis of second-order methods for secular equations , 1997, Math. Comput..

[11]  F. Trench,et al.  Numerical solution of the eigenvalue problem for Hermitian Toeplitz matrices , 1989 .

[12]  J. Bunch,et al.  Rank-one modification of the symmetric eigenproblem , 1978 .

[13]  W. Gragg,et al.  Numerical experience with a superfast real Toeplitz solver , 1989 .

[14]  H. J. Landau,et al.  A Note on the Eigenvalues of Hermitian Matrices , 1978 .

[15]  Gene H. Golub,et al.  Matrix computations , 1983 .

[16]  W. Gragg,et al.  The generalized Schur algorithm for the superfast solution of Toeplitz systems , 1987 .

[17]  James Durbin,et al.  The fitting of time series models , 1960 .

[18]  G. Szegő,et al.  On the Eigen-Values of Certain Hermitian Forms , 1953 .

[19]  Wolfgang Mackens,et al.  The Minimum Eigenvalue of a Symmetric Positive-Definite Toeplitz Matrix and Rational Hermitian Interpolation , 1997 .

[20]  George Cybenko,et al.  Computing thr minimum eigenvalue of a symmetric positive definite Toeplitz matrix , 1984 .

[21]  James R. Bunch,et al.  Stability of Methods for Solving Toeplitz Systems of Equations , 1985 .

[22]  Yu Hen Hu,et al.  Toeplitz eigensystem solver , 1985, IEEE Trans. Acoust. Speech Signal Process..

[23]  Alan L. Andrew,et al.  Eigenvectors of certain matrices , 1973 .

[24]  George Cybenko,et al.  The Numerical Stability of the Levinson-Durbin Algorithm for Toeplitz Systems of Equations , 1980 .

[25]  Y. Genin,et al.  Spectral properties of finite Toeplitz matrices , 1984 .