Hydrogen cogeneration with Generation IV nuclear power plants

[1]  Martin A. Green,et al.  Solar cell efficiency tables (version 46) , 2015 .

[2]  Marc A. Rosen,et al.  The Prospects for Renewable Energy through Hydrogen Energy Systems , 2015 .

[3]  A. Tavasoli,et al.  Hydrogen and syngas production from gasification of lignocellulosic biomass in supercritical water media , 2015, International Journal of Recycling of Organic Waste in Agriculture.

[4]  Sib Krishna Ghoshal,et al.  Hydrogen the future transportation fuel: From production to applications , 2015 .

[5]  F. Arias,et al.  On the Feasibility of Self-Sustainable Deuterium Production in Fusion Reactors Using an Ionization Chamber , 2015 .

[6]  Mahsa Ali Tarsad,et al.  Solar hydrogen production via thermochemical iron oxide–iron sulfate water splitting cycle , 2015 .

[7]  Serguei N. Lvov,et al.  Thermodynamics and Efficiency of a CuCl(aq)/HCl(aq) Electrolyzer , 2014 .

[8]  B. Şarer,et al.  Contributions of each isotope in some fluids on neutronic performance in a fusion–fission hybrid reactor: a Monte Carlo method , 2014 .

[9]  Aldo Steinfeld,et al.  Diffusion of oxygen in ceria at elevated temperatures and its application to H2O/CO2 splitting thermochemical redox cycles , 2014 .

[10]  G. Naterer,et al.  Progress of international program on hydrogen production with the copper–chlorine cycle , 2014 .

[11]  G. Naterer,et al.  Shadow imaging of particle dynamics and dissolution rates in aqueous solutions for hydrogen production , 2013 .

[12]  A. L. Gal,et al.  Reactivity of Doped Ceria-Based Mixed Oxides for Solar Thermochemical Hydrogen Generation via Two-Step Water-Splitting Cycles , 2013 .

[13]  Ibrahim Dincer,et al.  Hydrogen Production from Nuclear Energy , 2013 .

[14]  Ibrahim Dincer,et al.  Investigation of an integrated hydrogen production system based on nuclear and renewable energy sources: a new approach for sustainable hydrogen production via copper–chlorine thermochemical cycles , 2012 .

[15]  G. Naterer,et al.  Towards integration of hydrolysis, decomposition and electrolysis processes of the Cu–Cl thermochemical water splitting cycle , 2012 .

[16]  G. Naterer,et al.  Comparison of thermochemical, electrolytic, photoelectrolytic and photochemical solar-to-hydrogen production technologies , 2012 .

[17]  Marc A. Rosen,et al.  Pinch analysis for recycling thermal energy in the Cu–Cl cycle , 2012 .

[18]  Ulrich Vogt,et al.  Solar Thermochemical CO2 Splitting Utilizing a Reticulated Porous Ceria Redox System , 2012 .

[19]  G. Naterer,et al.  Interfacial thermodynamics and X-ray diffraction of hydrolysis products in multiphase reacting flow of the Cu–Cl cycle , 2012 .

[20]  G. Naterer,et al.  Nuclear‐based hydrogen production with a thermochemical copper–chlorine cycle and supercritical water reactor: equipment scale‐up and process simulation , 2012 .

[21]  Aldo Steinfeld,et al.  Thermodynamic Analysis of Cerium-Based Oxides for Solar Thermochemical Fuel Production , 2012 .

[22]  D. O'Leary The deeds to deuterium. , 2012, Nature chemistry.

[23]  William R. Smith,et al.  Clean hydrogen production with the Cu–Cl cycle – Progress of international consortium, I: Experimental unit operations , 2011 .

[24]  William R. Smith,et al.  Clean hydrogen production with the Cu–Cl cycle – Progress of international consortium, II: Simulations, thermochemical data and materials , 2011 .

[25]  S. Pushpavanam,et al.  Analysis of liquid circulation and mixing in a partitioned electrolytic tank , 2011 .

[26]  Rich S. Schatz,et al.  Advanced CuCl Electrolyzer for Hydrogen Production via the Cu-Cl Thermochemical Cycle , 2011 .

[27]  G. Naterer,et al.  X-ray diffraction study of multiphase reverse reaction with molten CuCl and oxygen , 2011 .

[28]  V. Balzani,et al.  The hydrogen issue. , 2011, ChemSusChem.

[29]  E. Easton,et al.  Ceramic carbon electrode-based anodes for use in the Cu-Cl thermochemical cycle ☆ , 2010 .

[30]  R. Allen,et al.  Nuclear heat for hydrogen production: Coupling a very high/high temperature reactor to a hydrogen production plant , 2009 .

[31]  Jianli Hu,et al.  An overview of hydrogen production technologies , 2009 .

[32]  G. Marbán,et al.  Towards the hydrogen economy , 2007 .

[33]  Gilles Flamant,et al.  Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production , 2007 .

[34]  F. Dryer,et al.  SPONTANEOUS IGNITION OF PRESSURIZED RELEASES OF HYDROGEN AND NATURAL GAS INTO AIR , 2007 .

[35]  C. Forsberg Future hydrogen markets for large-scale hydrogen production systems , 2007 .

[36]  Tetsuji Oda,et al.  Minimum ignition energy of hydrogen–air mixture: Effects of humidity and spark duration , 2007 .

[37]  Gilles Flamant,et al.  Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides , 2006 .

[38]  R. Allen,et al.  A figure of merit assessment of the routes to hydrogen , 2005 .

[39]  Vladimir M. Aroutiounian,et al.  Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting , 2005 .

[40]  K. Aldas,et al.  Application of a two-phase 'ow model for natural convection in an electrochemical cell , 2005 .

[41]  Charles W. Forsberg,et al.  Hydrogen, nuclear energy, and the advanced high-temperature reactor , 2003 .

[42]  A. Steinfeld Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions , 2002 .

[43]  M. Krumpelt,et al.  Hydrogen from hydrocarbon fuels for fuel cells , 2001 .

[44]  P. Boissonneau,et al.  An experimental investigation of bubble-induced free convection in a small electrochemical cell , 2000 .

[45]  I. Dincer Green methods for hydrogen production , 2012 .

[46]  Mujid S. Kazimi,et al.  Efficiency of hydrogen production systems using alternative nuclear energy technologies , 2006 .

[47]  J. O'm. Bockris,et al.  ON THE SPLITTING OF WATER , 1985 .