On the Convergence of Inhomogeneous Markov Chains Approximating Equilibrium Placements of Flexible Objects

[1]  Andreas Alexander Albrecht,et al.  Stochastic Simulations of Two-Dimensional Composite Packings , 1997 .

[2]  Andreas Alexander Albrecht,et al.  Computing elastic moduli of two-dimensional random networks of rigid and nonrigid bonds by simulated annealing , 1997 .

[3]  Chak-Kuen Wong,et al.  Optimal Placements of Flexible Objects: Part II: A Simulated Annealing Approach for the Bounded Case , 1997, IEEE Trans. Computers.

[4]  Chak-Kuen Wong,et al.  Optimal Placements of Flexible Objects: Part I: Analytical Results for the Unbounded Case , 1997, IEEE Trans. Computers.

[5]  Johan Helsing,et al.  Thin Bridges in Isotropic Electrostatics , 1996 .

[6]  Schulz,et al.  Dilute and dense systems of random copolymers in the equilibrium state. , 1996, Physical review. B, Condensed matter.

[7]  Majid Sarrafzadeh,et al.  An Introduction To VLSI Physical Design , 1996 .

[8]  Alexander Z. Zinchenko,et al.  Algorithm for random close packing of spheres with periodic boundary conditions , 1994 .

[9]  Anand Jagota,et al.  Viscosities and sintering rates of a two-dimensional granular composite , 1993 .

[10]  Mark Jerrum,et al.  Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..

[11]  V. B. Kashirin,et al.  New approach to the dense random packing of soft spheres. Dependence of model characteristics on potential shape , 1993 .

[12]  Alistair Sinclair,et al.  Algorithms for Random Generation and Counting: A Markov Chain Approach , 1993, Progress in Theoretical Computer Science.

[13]  O. Catoni Rough Large Deviation Estimates for Simulated Annealing: Application to Exponential Schedules , 1992 .

[14]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[15]  Emile H. L. Aarts,et al.  Simulated annealing and Boltzmann machines - a stochastic approach to combinatorial optimization and neural computing , 1990, Wiley-Interscience series in discrete mathematics and optimization.

[16]  Chiang Tzuu-Shuh,et al.  On the convergence rate of annealing processes , 1988 .

[17]  Bergman,et al.  Scaling properties of the elastic stiffness moduli of a random rigid-nonrigid network near the rigidity threshold: Theory and simulations. , 1988, Physical review. B, Condensed matter.

[18]  Bruce E. Hajek,et al.  Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..

[19]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, WG.

[20]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[21]  D. Mitra,et al.  Convergence and finite-time behavior of simulated annealing , 1985, 1985 24th IEEE Conference on Decision and Control.

[22]  A. Sangiovanni-Vincentelli,et al.  The TimberWolf placement and routing package , 1985, IEEE Journal of Solid-State Circuits.

[23]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[24]  Valerie Isham,et al.  Non‐Negative Matrices and Markov Chains , 1983 .

[25]  Scott Kirkpatrick,et al.  An introduction to percolation theory , 1971 .

[26]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[27]  Carl Sechen,et al.  Timing Driven Placement for Large Standard Cell Circuits , 1995, 32nd Design Automation Conference.

[28]  Arbabi,et al.  Mechanics of disordered solids. I. Percolation on elastic networks with central forces. , 1993, Physical review. B, Condensed matter.

[29]  Ehl Emile Aarts,et al.  Statistical cooling : a general approach to combinatorial optimization problems , 1985 .

[30]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[31]  P. R. Pinnock,et al.  The mechanical properties of solid polymers , 1966 .