Microglia-containing cerebral organoids derived from induced pluripotent stem cells for the study of neurological diseases

[1]  M. Giovannini,et al.  An Overview on the Differential Interplay Among Neurons–Astrocytes–Microglia in CA1 and CA3 Hippocampus in Hypoxia/Ischemia , 2020, Frontiers in Cellular Neuroscience.

[2]  S. Masters,et al.  Constitutive immune mechanisms: mediators of host defence and immune regulation , 2020, Nature Reviews Immunology.

[3]  E. Kavanagh,et al.  Microglia: Agents of the CNS Pro-Inflammatory Response , 2020, Cells.

[4]  Anne-Laure Hemonnot,et al.  Microglia in Alzheimer Disease: Well-Known Targets and New Opportunities , 2019, Front. Aging Neurosci..

[5]  W. Petri,et al.  Microglia: Immune Regulators of Neurodevelopment , 2018, Front. Immunol..

[6]  John R. Huguenard,et al.  Reliability of human 3D cortical organoid generation , 2018, Nature Methods.

[7]  R. Kahn,et al.  Microglia innately develop within cerebral organoids , 2018, Nature Communications.

[8]  S. Hickman,et al.  Microglia in neurodegeneration , 2018, Nature Neuroscience.

[9]  F. Ginhoux,et al.  The mysterious origins of microglia , 2018, Nature Neuroscience.

[10]  T. Claudepierre,et al.  Cellular and Molecular Aspects of the β-N-Methylamino-l-alanine (BMAA) Mode of Action within the Neurodegenerative Pathway: Facts and Controversy , 2017, Toxins.

[11]  A. Regev,et al.  Temporal Tracking of Microglia Activation in Neurodegeneration at Single-Cell Resolution , 2017, Cell reports.

[12]  I. Amit,et al.  A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease , 2017, Cell.

[13]  Hans Clevers,et al.  Disease Modeling in Stem Cell-Derived 3D Organoid Systems. , 2017, Trends in molecular medicine.

[14]  E. Brittebo,et al.  β-N-Methylamino-l-alanine (BMAA) perturbs alanine, aspartate and glutamate metabolism pathways in human neuroblastoma cells as determined by metabolic profiling , 2017, Amino Acids.

[15]  Madeline A. Lancaster,et al.  Dishing out mini-brains: Current progress and future prospects in brain organoid research , 2016, Developmental biology.

[16]  H. Okano,et al.  Modeling neurological diseases with induced pluripotent cells reprogrammed from immortalized lymphoblastoid cell lines , 2016, Molecular Brain.

[17]  Li-Huei Tsai,et al.  Efficient derivation of microglia-like cells from human pluripotent stem cells , 2016, Nature Medicine.

[18]  G. Kisby,et al.  Seeking environmental causes of neurodegenerative disease and envisioning primary prevention. , 2016, Neurotoxicology.

[19]  W. Le,et al.  Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases , 2016, Molecular Neurobiology.

[20]  J. Hao,et al.  Rapid generation of sub-type, region-specific neurons and neural networks from human pluripotent stem cell-derived neurospheres. , 2015, Stem cell research.

[21]  A. West,et al.  M1 and M2 immune activation in Parkinson’s Disease: Foe and ally? , 2015, Neuroscience.

[22]  S. Rogers,et al.  Age-Related Onset of Obesity Corresponds with Metabolic Dysregulation and Altered Microglia Morphology in Mice Deficient for Ifitm Proteins , 2015, PloS one.

[23]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[24]  S. Targan,et al.  Reliable Generation of Induced Pluripotent Stem Cells From Human Lymphoblastoid Cell Lines , 2014, Stem cells translational medicine.

[25]  Paul Theodor Pyl,et al.  HTSeq – A Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[26]  Dorian B. McGavern,et al.  Microglia development and function. , 2014, Annual review of immunology.

[27]  S. Gygi,et al.  Identification of a Unique TGF-β Dependent Molecular and Functional Signature in Microglia , 2013, Nature Neuroscience.

[28]  Toshiro K. Ohsumi,et al.  The Microglial Sensome Revealed by Direct RNA Sequencing , 2013, Nature Neuroscience.

[29]  G. Harry Microglia during development and aging. , 2013, Pharmacology & therapeutics.

[30]  Madeline A. Lancaster,et al.  Cerebral organoids model human brain development and microcephaly , 2013, Nature.

[31]  Robert Gentleman,et al.  Software for Computing and Annotating Genomic Ranges , 2013, PLoS Comput. Biol..

[32]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[33]  R. Gamelli,et al.  Genomic responses in mouse models poorly mimic human inflammatory diseases , 2013, Proceedings of the National Academy of Sciences.

[34]  M. Diamond,et al.  IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia , 2012, Nature Immunology.

[35]  M. Giustetto,et al.  Synaptic Pruning by Microglia Is Necessary for Normal Brain Development , 2011, Science.

[36]  J. E. Khoury Neurodegeneration and the neuroimmune system , 2010, Nature Medicine.

[37]  Matthew D. Young,et al.  Gene ontology analysis for RNA-seq: accounting for selection bias , 2010, Genome Biology.

[38]  J. Miklossy,et al.  Enduring involvement of tau, β-amyloid, α-synuclein, ubiquitin and TDP-43 pathology in the amyotrophic lateral sclerosis/parkinsonism–dementia complex of Guam (ALS/PDC) , 2008, Acta Neuropathologica.

[39]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[40]  Shulan Tian,et al.  Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells , 2007, Science.

[41]  C. Savage-Dunn,et al.  TGF-beta signaling. , 2005, WormBook : the online review of C. elegans biology.

[42]  E. Masliah,et al.  Loss of TGF-β1 Leads to Increased Neuronal Cell Death and Microgliosis in Mouse Brain , 2003, Neuron.

[43]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[44]  N. Mantel,et al.  Motor neuron disease on Guam: geographic and familial Occurrence, 1956–85 , 1996, Acta neurologica Scandinavica.

[45]  Yate-Ching Yuan,et al.  Optimal Calculation of RNA-Seq Fold-Change Values , 2013 .

[46]  W. Bradley,et al.  The ALS/PDC syndrome of Guam and the cycad hypothesis. , 2009, Neurology.

[47]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[48]  G. Kisby,et al.  Content of the neurotoxins cycasin (methylazoxymethanol beta-D-glucoside) and BMAA (beta-N-methylamino-L-alanine) in cycad flour prepared by Guam Chamorros. , 1992, Neurology.