The FHD/εppsilon Epoch of Reionisation power spectrum pipeline

Epoch of Reionization data analysis requires unprecedented levels of accuracy in radio interferometer pipelines. We have developed an imaging power spectrum analysis to meet these requirements and generate robust 21 cm EoR measurements. In this work, we build a signal path framework to mathematically describe each step in the analysis, from data reduction in the FHD package to power spectrum generation in the $\varepsilon$ppsilon package. In particular, we focus on the distinguishing characteristics of FHD/$\varepsilon$ppsilon: highly accurate spectral calibration, extensive data verification products, and end-to-end error propagation. We present our key data analysis products in detail to facilitate understanding of the prominent systematics in image-based power spectrum analyses. As a verification to our analysis, we also highlight a full-pipeline analysis simulation to demonstrate signal preservation and lack of signal loss. This careful treatment ensures that the FHD/$\varepsilon$ppsilon power spectrum pipeline can reduce radio interferometric data to produce credible 21 cm EoR measurements.

[1]  Ruby Byrne,et al.  Fundamental Limitations on the Calibration of Redundant 21 cm Cosmology Instruments and Implications for HERA and the SKA , 2018, The Astrophysical Journal.

[2]  N. Udaya Shankar,et al.  IMAGING THE EPOCH OF REIONIZATION: LIMITATIONS FROM FOREGROUND CONFUSION AND IMAGING ALGORITHMS , 2011, 1106.1297.

[3]  Bryna Hazelton,et al.  FOUR FUNDAMENTAL FOREGROUND POWER SPECTRUM SHAPES FOR 21 cm COSMOLOGY OBSERVATIONS , 2012, 1202.3830.

[4]  Jason Manley,et al.  OPENING THE 21 cm EPOCH OF REIONIZATION WINDOW: MEASUREMENTS OF FOREGROUND ISOLATION WITH PAPER , 2013, 1301.7099.

[5]  M. Morales,et al.  THE FUNDAMENTAL MULTI-BASELINE MODE-MIXING FOREGROUND IN 21 cm EPOCH OF REIONIZATION OBSERVATIONS , 2013, 1301.3126.

[6]  Hannes Jensen,et al.  Reionization and the Cosmic Dawn with the Square Kilometre Array , 2012, 1210.0197.

[7]  J. V. Vleck,et al.  The spectrum of clipped noise , 1966 .

[8]  Suhaila E. Al-jawder,et al.  Managing acute respiratory decompensation in the morbidly obese , 2012, Respirology.

[9]  Foregrounds for 21-cm observations of neutral gas at high redshift , 2003, astro-ph/0302099.

[10]  A. Ghosh,et al.  Visibility-based angular power spectrum estimation in low-frequency radio interferometric observations , 2014, 1409.7789.

[11]  E. Lenc,et al.  Understanding instrumental Stokes leakage in Murchison Widefield Array polarimetry , 2014, 1412.4466.

[12]  Lourdes Verdes-Montenegro,et al.  Advancing Astrophysics with the Square Kilometre Array , 2015 .

[13]  M. Morales,et al.  Calibration requirements for detecting the 21 cm epoch of reionization power spectrum and implications for the SKA , 2016, 1603.00607.

[14]  J. Hewitt,et al.  Assessment of Ionospheric Activity Tolerances for Epoch of Reionization Science with the Murchison Widefield Array , 2018, The Astrophysical Journal.

[15]  L. Koopmans,et al.  The impact of interference excision on 21-cm epoch of reionization power spectrum analyses , 2019, Monthly Notices of the Royal Astronomical Society.

[16]  Abhirup Datta,et al.  BRIGHT SOURCE SUBTRACTION REQUIREMENTS FOR REDSHIFTED 21 cm MEASUREMENTS , 2010 .

[17]  Tapering the sky response for angular power spectrum estimation from low-frequency radio-interferometric data. , 2016, Monthly notices of the Royal Astronomical Society.

[18]  Miguel F. Morales,et al.  Toward Epoch of Reionization Measurements with Wide-Field Radio Observations , 2003 .

[19]  Tim J. Cornwell,et al.  The Noncoplanar Baselines Effect in Radio Interferometry: The W-Projection Algorithm , 2008, IEEE Journal of Selected Topics in Signal Processing.

[20]  Stefan J. Wijnholds,et al.  Fast gain calibration in radio astronomy using alternating direction implicit methods: Analysis and applications , 2014, 1410.2101.

[21]  IoA,et al.  Radio Foregrounds for the 21 Centimeter Tomography of the Neutral Intergalactic Medium at High Redshifts , 2001, astro-ph/0109241.

[22]  Cathryn M. Trott,et al.  THE IMPACT OF POINT-SOURCE SUBTRACTION RESIDUALS ON 21 cm EPOCH OF REIONIZATION ESTIMATION , 2012, 1208.0646.

[23]  David R. DeBoer,et al.  WHAT NEXT-GENERATION 21 cm POWER SPECTRUM MEASUREMENTS CAN TEACH US ABOUT THE EPOCH OF REIONIZATION , 2013, 1310.7031.

[24]  Ue-Li Pen,et al.  Coaxing cosmic 21 cm fluctuations from the polarized sky using m -mode analysis , 2014, 1401.2095.

[25]  A Fast Gridded Method for the Estimation of the Power Spectrum of the Cosmic Microwave Background from Interferometer Data with Application to the Cosmic Background Imager , 2002, astro-ph/0205385.

[26]  C. Contaldi,et al.  A Fast Gridded Method for the Estimation of the Power Spectrum of the CMB from Interferometer Data with Application to the Cosmic Background Imager , 2022 .

[27]  R. Sault,et al.  Understanding radio polarimetry. I. Mathematical foundations , 1996 .

[28]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[29]  N. Lomb Least-squares frequency analysis of unequally spaced data , 1976 .

[30]  U. Pen,et al.  The GMRT Epoch of Reionization experiment: a new upper limit on the neutral hydrogen power spectrum at z≈ 8.6 , 2010, 1006.1351.

[31]  M. Morales,et al.  Understanding the diversity of 21 cm cosmology analyses , 2018, Monthly Notices of the Royal Astronomical Society.

[32]  Is long QT syndrome a disease of abnormal mechanical contraction? , 2010, Circulation.

[33]  Cathryn M. Trott,et al.  Epoch of reionization window. I. Mathematical formalism , 2014, 1404.2596.

[34]  W. Beyer CRC Standard Probability And Statistics Tables and Formulae , 1990 .

[35]  B. Pindor,et al.  Characterization of the ionosphere above the Murchison Radio Observatory using the Murchison Widefield Array , 2017, 1707.04978.

[36]  David R. DeBoer,et al.  Improved 21 cm Epoch of Reionization Power Spectrum Measurements with a Hybrid Foreground Subtraction and Avoidance Technique , 2018, The Astrophysical Journal.

[37]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[38]  J. Usón,et al.  Correcting direction-dependent gains in the deconvolution of radio interferometric images , 2008, 0805.0834.

[39]  A. Stebbins,et al.  ALL-SKY INTERFEROMETRY WITH SPHERICAL HARMONIC TRANSIT TELESCOPES , 2013, 1302.0327.

[40]  Roger J. Cappallo,et al.  Real-Time Calibration of the Murchison Widefield Array , 2008, IEEE Journal of Selected Topics in Signal Processing.

[41]  David F. Moore,et al.  A PER-BASELINE, DELAY-SPECTRUM TECHNIQUE FOR ACCESSING THE 21 cm COSMIC REIONIZATION SIGNATURE , 2012, 1204.4749.

[42]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[43]  Miguel F. Morales,et al.  Software holography: interferometric data analysis for the challenges of next generation observatories , 2008, 0810.5107.

[44]  David W. Hogg,et al.  Distance measures in cosmology , 1999, astro-ph/9905116.