Adjustable structure transition and improved gases (H2, CO2) adsorption property of metal-organic framework MIL-53 by encapsulation of BNHx.

The structure transition of flexible MOF (MIL-53) can be adjusted by confinement of BNH(x) into MIL-53 channels. Hydrogen and carbon dioxide adsorption properties are also improved by incorporating BNH(x). At 77 K and 1 atm pressure hydrogen storage capacity can reach 2.0 wt% and CO(2) adsorption capacity is 4.5 mmol g(-1) at 273 K 1 atm.

[1]  F. Babonneau,et al.  Synthesis and characterization of poly(aminoborane) as a new boron nitride precursor , 1999 .

[2]  Gérard Férey,et al.  Heat of adsorption for hydrogen in microporous high-surface-area materials. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[3]  Z. Huo,et al.  Iodine-mediated electrophilic cyclization of 2-alkynyl-1-methylene azide aromatics leading to highly substituted isoquinolines and its application to the synthesis of norchelerythrine. , 2008, Journal of the American Chemical Society.

[4]  L. Giebeler,et al.  Selective adsorption and separation of ortho-substituted alkylaromatics with the microporous aluminum terephthalate MIL-53. , 2008, Journal of the American Chemical Society.

[5]  Michael O'Keeffe,et al.  Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. , 2010, Accounts of chemical research.

[6]  Michael J Zaworotko,et al.  Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks. , 2009, Chemical Society reviews.

[7]  R. Paine,et al.  Synthetic routes to boron nitride , 1990 .

[8]  C. Serre,et al.  Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. , 2008, Angewandte Chemie.

[9]  Hongwei Zhu,et al.  Hydrogen uptake in boron nitride nanotubes at room temperature. , 2002, Journal of the American Chemical Society.

[10]  Seth M. Cohen,et al.  Tuning hydrogen sorption properties of metal-organic frameworks by postsynthetic covalent modification. , 2010, Chemistry.

[11]  Gustaaf Van Tendeloo,et al.  Ruthenium nanoparticles inside porous [Zn4O(bdc)3] by hydrogenolysis of adsorbed [Ru(cod)(cot)]: a solid-state reference system for surfactant-stabilized ruthenium colloids. , 2008, Journal of the American Chemical Society.

[12]  A. Fletcher,et al.  Hysteretic Adsorption and Desorption of Hydrogen by Nanoporous Metal-Organic Frameworks , 2004, Science.

[13]  F. Babonneau,et al.  11B and 15N solid state NMR investigation of a boron nitride preceramic polymer prepared by ammonolysis of borazine , 2005 .

[14]  R. Schmid,et al.  Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. , 2005, Angewandte Chemie.

[15]  S. Kaskel,et al.  Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties , 2007 .

[16]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[17]  A. Auroux,et al.  Influence of the Support Surface Chemistry on the Catalytic Performances of PdO/BN Catalysts , 2008 .

[18]  Lixian Sun,et al.  Improved hydrogen desorption properties of ammonia borane by Ni-modified metal-organic frameworks , 2011 .

[19]  A. Auroux,et al.  Boron nitride: A high potential support for combustion catalysts , 2005 .

[20]  Gérard Férey,et al.  A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. , 2004, Chemistry.

[21]  T. Uemura,et al.  Sol-gel synthesis of low-dimensional silica within coordination nanochannels. , 2008, Journal of the American Chemical Society.

[22]  S. Jhi,et al.  Hydrogen adsorption on boron nitride nanotubes: A path to room-temperature hydrogen storage , 2004 .

[23]  F. Babonneau,et al.  Organically Modified SiO2−B2O3 Gels Displaying a High Content of Borosiloxane (B−O−Si⋮) Bonds , 1999 .

[24]  C. Serre,et al.  Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. , 2005, Journal of the American Chemical Society.