A bio-inspired computational high-precision dental milling system

A novel bio-inspired computational high-precision dental milling system is proposed in this interdisciplinar research. The system applies several bio-inspired models, based on unsupervised learning, that analyse and identify the most relevant features of high-precision dental-milling data sets and their internal structures. Finally, a supervised neural architecture and certain identification techniques are applied, in order to model and to optimize the high-precision process. This is done by empirically testing the model using a real data set taken from a dynamic high-precision machining centre with five axes.

[1]  Colin Fyfe,et al.  A Neural Network for PCA and Beyond , 1997, Neural Processing Letters.

[2]  J. Sjöberg Neural networks for modelling and control of dynamic systems: M. Nørgaard, O. Ravn, N. K. Poulsen and L. K. Hansen. Springer-Verlag, London Berlin Heidelberg, 2000, pp. xiv+246 , 2004 .

[3]  Emilio Corchado,et al.  1. Soft Computing for detecting thermal insulation failures in buildings , 2009 .

[4]  Emilio Corchado,et al.  A soft computing method for detecting lifetime building thermal insulation failures , 2010, Integr. Comput. Aided Eng..

[5]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[6]  Emilio Corchado,et al.  Maximum and Minimum Likelihood Hebbian Learning for Exploratory Projection Pursuit , 2002, ICANN.

[7]  Stelios D. Bekiros,et al.  Evaluating Direction-of-Change Forecasting: Neurofuzzy Models vs. Neural Networks , 2005, Math. Comput. Model..

[8]  Emilio Corchado,et al.  Maximum likelihood Hebbian rules , 2002, ESANN.

[9]  H. Sebastian Seung,et al.  The Rectified Gaussian Distribution , 1997, NIPS.

[10]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[11]  Antanas Verikas,et al.  Feature selection with neural networks , 2002, Pattern Recognit. Lett..

[12]  R. Palmer,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[13]  Teuvo Kohonen,et al.  The self-organizing map , 1990, Neurocomputing.

[14]  Babak Hassibi,et al.  Second Order Derivatives for Network Pruning: Optimal Brain Surgeon , 1992, NIPS.

[15]  Huan Liu,et al.  Toward integrating feature selection algorithms for classification and clustering , 2005, IEEE Transactions on Knowledge and Data Engineering.

[16]  Ying Han,et al.  Structuring global responses of local filters using lateral connections , 2003, J. Exp. Theor. Artif. Intell..

[17]  Niels Kjølstad Poulsen,et al.  Neural Networks for Modelling and Control of Dynamic Systems: A Practitioner’s Handbook , 2000 .

[18]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[19]  Franklin A. Graybill,et al.  Introduction to The theory , 1974 .

[20]  Lars Kai Hansen Controlled Growth of Cascade Correlation Nets , 1994 .

[21]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[22]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[23]  Madan M. Gupta,et al.  On the principles of fuzzy neural networks , 1994 .

[24]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[25]  Emilio Corchado,et al.  Connectionist Techniques For The Identification And Suppression Of Interfering Underlying Factors , 2003, Int. J. Pattern Recognit. Artif. Intell..

[26]  Emilio Corchado,et al.  The application of a two-step AI model to an automated pneumatic drilling process , 2009, Int. J. Comput. Math..

[27]  John W. Tukey,et al.  A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.

[28]  Emilio Corchado,et al.  Maximum and Minimum Likelihood Hebbian Learning for Exploratory Projection Pursuit , 2002, Data Mining and Knowledge Discovery.

[29]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[30]  Xiangdong He,et al.  A New Method for Identifying Orders of Input-Output Models for Nonlinear Dynamic Systems , 1993, 1993 American Control Conference.

[31]  Erkki Oja,et al.  Neural Networks, Principal Components, and Subspaces , 1989, Int. J. Neural Syst..

[32]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[33]  T. Söderström,et al.  A useful input parameterization for optimal experiment design , 1982 .

[34]  R. Fletcher Practical Methods of Optimization , 1988 .